|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164 |
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Mag-net detector test.
- """
- import numpy as np
- import pytest
-
- import mindspore.ops.operations as P
- from mindspore.nn import Cell
- from mindspore.ops.operations import TensorAdd
- from mindspore import Model
- from mindspore import context
-
- from mindarmour.detectors.mag_net import ErrorBasedDetector
- from mindarmour.detectors.mag_net import DivergenceBasedDetector
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
-
-
- class Net(Cell):
- """
- Construct the network of target model.
- """
-
- def __init__(self):
- super(Net, self).__init__()
- self.add = TensorAdd()
-
- def construct(self, inputs):
- """
- Construct network.
-
- Args:
- inputs (Tensor): Input data.
- """
- return self.add(inputs, inputs)
-
-
- class PredNet(Cell):
- """
- Construct the network of target model.
- """
-
- def __init__(self):
- super(PredNet, self).__init__()
- self.shape = P.Shape()
- self.reshape = P.Reshape()
- self._softmax = P.Softmax()
-
- def construct(self, inputs):
- """
- Construct network.
-
- Args:
- inputs (Tensor): Input data.
- """
- data = self.reshape(inputs, (self.shape(inputs)[0], -1))
- return self._softmax(data)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_mag_net():
- """
- Compute mindspore result.
- """
- np.random.seed(5)
- ori = np.random.rand(4, 4, 4).astype(np.float32)
- np.random.seed(6)
- adv = np.random.rand(4, 4, 4).astype(np.float32)
- model = Model(Net())
- detector = ErrorBasedDetector(model)
- detector.fit(ori)
- detected_res = detector.detect(adv)
- expected_value = np.array([1, 1, 1, 1])
- assert np.all(detected_res == expected_value)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_mag_net_transform():
- """
- Compute mindspore result.
- """
- np.random.seed(6)
- adv = np.random.rand(4, 4, 4).astype(np.float32)
- model = Model(Net())
- detector = ErrorBasedDetector(model)
- adv_trans = detector.transform(adv)
- assert np.any(adv_trans != adv)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_mag_net_divergence():
- """
- Compute mindspore result.
- """
- np.random.seed(5)
- ori = np.random.rand(4, 4, 4).astype(np.float32)
- np.random.seed(6)
- adv = np.random.rand(4, 4, 4).astype(np.float32)
- encoder = Model(Net())
- model = Model(PredNet())
- detector = DivergenceBasedDetector(encoder, model)
- threshold = detector.fit(ori)
- detector.set_threshold(threshold)
- detected_res = detector.detect(adv)
- expected_value = np.array([1, 0, 1, 1])
- assert np.all(detected_res == expected_value)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_mag_net_divergence_transform():
- """
- Compute mindspore result.
- """
- np.random.seed(6)
- adv = np.random.rand(4, 4, 4).astype(np.float32)
- encoder = Model(Net())
- model = Model(PredNet())
- detector = DivergenceBasedDetector(encoder, model)
- adv_trans = detector.transform(adv)
- assert np.any(adv_trans != adv)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_value_error():
- np.random.seed(6)
- adv = np.random.rand(4, 4, 4).astype(np.float32)
- encoder = Model(Net())
- model = Model(PredNet())
- detector = DivergenceBasedDetector(encoder, model, option='bad_op')
- with pytest.raises(NotImplementedError):
- assert detector.detect_diff(adv)
|