|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273 |
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Black-box defense evaluation test.
- """
- import numpy as np
- import pytest
-
- from mindarmour.evaluations.black.defense_evaluation import BlackDefenseEvaluate
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_def_eval():
- """
- Tests for black-box defense evaluation
- """
- # prepare data
- raw_preds = np.array([[0.1, 0.1, 0.2, 0.6], [0.1, 0.7, 0.0, 0.2],
- [0.8, 0.1, 0.0, 0.1], [0.1, 0.1, 0.2, 0.6],
- [0.1, 0.7, 0.0, 0.2], [0.8, 0.1, 0.0, 0.1],
- [0.1, 0.1, 0.2, 0.6], [0.1, 0.7, 0.0, 0.2],
- [0.8, 0.1, 0.0, 0.1], [0.1, 0.1, 0.2, 0.6]])
-
- def_preds = np.array([[0.1, 0.1, 0.2, 0.6], [0.1, 0.7, 0.0, 0.2],
- [0.8, 0.1, 0.0, 0.1], [0.1, 0.1, 0.2, 0.6],
- [0.1, 0.7, 0.0, 0.2], [0.8, 0.1, 0.0, 0.1],
- [0.1, 0.1, 0.2, 0.6], [0.1, 0.7, 0.0, 0.2],
- [0.8, 0.1, 0.0, 0.1], [0.1, 0.1, 0.2, 0.6]])
- raw_query_counts = np.array([0, 0, 0, 0, 0, 10, 10, 20, 20, 30])
- def_query_counts = np.array([0, 0, 0, 0, 0, 30, 30, 40, 40, 50])
-
- raw_query_time = np.array([0.1, 0.1, 0.1, 0.1, 0.1, 2, 2, 4, 4, 6])
- def_query_time = np.array([0.3, 0.3, 0.3, 0.3, 0.3, 4, 4, 8, 8, 12])
-
- def_detection_counts = np.array([1, 0, 0, 0, 1, 5, 5, 5, 10, 20])
-
- true_labels = np.array([3, 1, 0, 3, 1, 0, 3, 1, 0, 3])
-
- # create obj
- def_eval = BlackDefenseEvaluate(raw_preds,
- def_preds,
- raw_query_counts,
- def_query_counts,
- raw_query_time,
- def_query_time,
- def_detection_counts,
- true_labels,
- max_queries=100)
- # run eval
- qcv = def_eval.qcv()
- asv = def_eval.asv()
- fpr = def_eval.fpr()
- qrv = def_eval.qrv()
- res = [qcv, asv, fpr, qrv]
-
- # compare
- expected_value = [0.2, 0.0, 0.4, 2.0]
- assert np.allclose(res, expected_value, 0.0001, 0.0001)
|