You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_deep_fool.py 5.1 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. """
  15. DeepFool-Attack test.
  16. """
  17. import numpy as np
  18. import pytest
  19. import mindspore.ops.operations as P
  20. from mindspore.nn import Cell
  21. from mindspore import context
  22. from mindspore import Tensor
  23. from mindarmour.adv_robustness.attacks import DeepFool
  24. # for user
  25. class Net(Cell):
  26. """
  27. Construct the network of target model.
  28. Examples:
  29. >>> net = Net()
  30. """
  31. def __init__(self):
  32. """
  33. Introduce the layers used for network construction.
  34. """
  35. super(Net, self).__init__()
  36. self._softmax = P.Softmax()
  37. def construct(self, inputs):
  38. """
  39. Construct network.
  40. Args:
  41. inputs (Tensor): Input data.
  42. """
  43. out = self._softmax(inputs)
  44. return out
  45. class Net2(Cell):
  46. """
  47. Construct the network of target model, specifically for detection model test case.
  48. Examples:
  49. >>> net = Net2()
  50. """
  51. def __init__(self):
  52. super(Net2, self).__init__()
  53. self._softmax = P.Softmax()
  54. def construct(self, inputs1, inputs2):
  55. out1 = self._softmax(inputs1)
  56. out2 = self._softmax(inputs2)
  57. return out2, out1
  58. @pytest.mark.level0
  59. @pytest.mark.platform_arm_ascend_training
  60. @pytest.mark.platform_x86_ascend_training
  61. @pytest.mark.env_card
  62. @pytest.mark.component_mindarmour
  63. def test_deepfool_attack():
  64. """
  65. Deepfool-Attack test
  66. """
  67. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
  68. net = Net()
  69. input_shape = (1, 5)
  70. _, classes = input_shape
  71. input_np = np.array([[0.1, 0.2, 0.7, 0.5, 0.4]]).astype(np.float32)
  72. input_me = Tensor(input_np)
  73. true_labels = np.argmax(net(input_me).asnumpy(), axis=1)
  74. attack = DeepFool(net, classes, max_iters=10, norm_level=2,
  75. bounds=(0.0, 1.0))
  76. adv_data = attack.generate(input_np, true_labels)
  77. # expected adv value
  78. expect_value = np.asarray([[0.10300991, 0.20332647, 0.59308802, 0.59651263,
  79. 0.40406296]])
  80. assert np.allclose(adv_data, expect_value), 'mindspore deepfool_method' \
  81. ' implementation error, ms_adv_x != expect_value'
  82. @pytest.mark.level0
  83. @pytest.mark.platform_arm_ascend_training
  84. @pytest.mark.platform_x86_ascend_training
  85. @pytest.mark.env_card
  86. @pytest.mark.component_mindarmour
  87. def test_deepfool_attack_detection():
  88. """
  89. Deepfool-Attack test
  90. """
  91. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
  92. net = Net2()
  93. inputs1_np = np.random.random((2, 10, 10)).astype(np.float32)
  94. inputs2_np = np.random.random((2, 10, 5)).astype(np.float32)
  95. gt_boxes, gt_logits = net(Tensor(inputs1_np), Tensor(inputs2_np))
  96. gt_boxes, gt_logits = gt_boxes.asnumpy(), gt_logits.asnumpy()
  97. gt_labels = np.argmax(gt_logits, axis=2)
  98. num_classes = 10
  99. attack = DeepFool(net, num_classes, model_type='detection', reserve_ratio=0.3,
  100. bounds=(0.0, 1.0))
  101. adv_data = attack.generate((inputs1_np, inputs2_np), (gt_boxes, gt_labels))
  102. assert np.any(adv_data != inputs1_np)
  103. @pytest.mark.level0
  104. @pytest.mark.platform_arm_ascend_training
  105. @pytest.mark.platform_x86_ascend_training
  106. @pytest.mark.env_card
  107. @pytest.mark.component_mindarmour
  108. def test_deepfool_attack_inf():
  109. """
  110. Deepfool-Attack test
  111. """
  112. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
  113. net = Net()
  114. input_shape = (1, 5)
  115. _, classes = input_shape
  116. input_np = np.array([[0.1, 0.2, 0.7, 0.5, 0.4]]).astype(np.float32)
  117. input_me = Tensor(input_np)
  118. true_labels = np.argmax(net(input_me).asnumpy(), axis=1)
  119. attack = DeepFool(net, classes, max_iters=10, norm_level=np.inf,
  120. bounds=(0.0, 1.0))
  121. adv_data = attack.generate(input_np, true_labels)
  122. assert np.any(input_np != adv_data)
  123. @pytest.mark.level0
  124. @pytest.mark.platform_arm_ascend_training
  125. @pytest.mark.platform_x86_ascend_training
  126. @pytest.mark.env_card
  127. @pytest.mark.component_mindarmour
  128. def test_value_error():
  129. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
  130. net = Net()
  131. input_shape = (1, 5)
  132. _, classes = input_shape
  133. input_np = np.array([[0.1, 0.2, 0.7, 0.5, 0.4]]).astype(np.float32)
  134. input_me = Tensor(input_np)
  135. true_labels = np.argmax(net(input_me).asnumpy(), axis=1)
  136. with pytest.raises(NotImplementedError):
  137. # norm_level=0 is not available
  138. attack = DeepFool(net, classes, max_iters=10, norm_level=1,
  139. bounds=(0.0, 1.0))
  140. assert attack.generate(input_np, true_labels)

MindArmour关注AI的安全和隐私问题。致力于增强模型的安全可信、保护用户的数据隐私。主要包含3个模块:对抗样本鲁棒性模块、Fuzz Testing模块、隐私保护与评估模块。 对抗样本鲁棒性模块 对抗样本鲁棒性模块用于评估模型对于对抗样本的鲁棒性,并提供模型增强方法用于增强模型抗对抗样本攻击的能力,提升模型鲁棒性。对抗样本鲁棒性模块包含了4个子模块:对抗样本的生成、对抗样本的检测、模型防御、攻防评估。