You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_cw.py 4.6 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. """
  15. CW-Attack test.
  16. """
  17. import numpy as np
  18. import pytest
  19. import mindspore.ops.operations as M
  20. from mindspore.nn import Cell
  21. from mindspore import context
  22. from mindarmour.adv_robustness.attacks import CarliniWagnerL2Attack
  23. # for user
  24. class Net(Cell):
  25. """
  26. Construct the network of target model.
  27. Examples:
  28. >>> net = Net()
  29. """
  30. def __init__(self):
  31. """
  32. Introduce the layers used for network construction.
  33. """
  34. super(Net, self).__init__()
  35. self._softmax = M.Softmax()
  36. def construct(self, inputs):
  37. """
  38. Construct network.
  39. Args:
  40. inputs (Tensor): Input data.
  41. """
  42. out = self._softmax(inputs)
  43. return out
  44. @pytest.mark.level0
  45. @pytest.mark.platform_arm_ascend_training
  46. @pytest.mark.platform_x86_ascend_training
  47. @pytest.mark.env_card
  48. @pytest.mark.component_mindarmour
  49. def test_cw_attack_ascend():
  50. """
  51. Feature: CW-Attack test for ascend
  52. Description: Given multiple images, we want to make sure the adversarial examples
  53. generated are different from the images
  54. Expectation: input_np != ms_adv_x
  55. """
  56. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
  57. net = Net()
  58. input_np = np.array([[0.1, 0.2, 0.7, 0.5, 0.4]]).astype(np.float32)
  59. label_np = np.array([3]).astype(np.int64)
  60. num_classes = input_np.shape[1]
  61. attack = CarliniWagnerL2Attack(net, num_classes, targeted=False)
  62. adv_data = attack.generate(input_np, label_np)
  63. assert np.any(input_np != adv_data)
  64. @pytest.mark.level0
  65. @pytest.mark.platform_x86_cpu
  66. @pytest.mark.env_card
  67. @pytest.mark.component_mindarmour
  68. def test_cw_attack_cpu():
  69. """
  70. Feature: CW-Attack test for cpu
  71. Description: Given multiple images, we want to make sure the adversarial examples
  72. generated are different from the images
  73. Expectation: input_np != ms_adv_x
  74. """
  75. context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
  76. net = Net()
  77. input_np = np.array([[0.1, 0.2, 0.7, 0.5, 0.4]]).astype(np.float32)
  78. label_np = np.array([3]).astype(np.int64)
  79. num_classes = input_np.shape[1]
  80. attack = CarliniWagnerL2Attack(net, num_classes, targeted=False)
  81. adv_data = attack.generate(input_np, label_np)
  82. assert np.any(input_np != adv_data)
  83. @pytest.mark.level0
  84. @pytest.mark.platform_arm_ascend_training
  85. @pytest.mark.platform_x86_ascend_training
  86. @pytest.mark.env_card
  87. @pytest.mark.component_mindarmour
  88. def test_cw_attack_targeted_ascend():
  89. """
  90. Feature: CW-Attack-Targeted test for ascend
  91. Description: Given multiple images, we want to make sure the adversarial examples
  92. generated are different from the images
  93. Expectation: input_np != ms_adv_x
  94. """
  95. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
  96. net = Net()
  97. input_np = np.array([[0.1, 0.2, 0.7, 0.5, 0.4]]).astype(np.float32)
  98. target_np = np.array([1]).astype(np.int64)
  99. num_classes = input_np.shape[1]
  100. attack = CarliniWagnerL2Attack(net, num_classes, targeted=True)
  101. adv_data = attack.generate(input_np, target_np)
  102. assert np.any(input_np != adv_data)
  103. @pytest.mark.level0
  104. @pytest.mark.platform_x86_cpu
  105. @pytest.mark.env_card
  106. @pytest.mark.component_mindarmour
  107. def test_cw_attack_targeted_cpu():
  108. """
  109. Feature: CW-Attack-Targeted test for cpu
  110. Description: Given multiple images, we want to make sure the adversarial examples
  111. generated are different from the images
  112. Expectation: input_np != ms_adv_x
  113. """
  114. context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
  115. net = Net()
  116. input_np = np.array([[0.1, 0.2, 0.7, 0.5, 0.4]]).astype(np.float32)
  117. target_np = np.array([1]).astype(np.int64)
  118. num_classes = input_np.shape[1]
  119. attack = CarliniWagnerL2Attack(net, num_classes, targeted=True)
  120. adv_data = attack.generate(input_np, target_np)
  121. assert np.any(input_np != adv_data)

MindArmour关注AI的安全和隐私问题。致力于增强模型的安全可信、保护用户的数据隐私。主要包含3个模块:对抗样本鲁棒性模块、Fuzz Testing模块、隐私保护与评估模块。 对抗样本鲁棒性模块 对抗样本鲁棒性模块用于评估模型对于对抗样本的鲁棒性,并提供模型增强方法用于增强模型抗对抗样本攻击的能力,提升模型鲁棒性。对抗样本鲁棒性模块包含了4个子模块:对抗样本的生成、对抗样本的检测、模型防御、攻防评估。