You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

example_non_target_attack.py 1.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445
  1. # Copyright 2022 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """non target attack"""
  16. import numpy as np
  17. import matplotlib.image as mp
  18. from mindspore import context
  19. import adversarial_attack
  20. from FaceRecognition.eval import get_model
  21. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  22. if __name__ == '__main__':
  23. inputs = adversarial_attack.load_data('photos/input/')
  24. targets = adversarial_attack.load_data('photos/target/')
  25. net = get_model()
  26. adversarial = adversarial_attack.FaceAdversarialAttack(inputs[0], targets[0], net)
  27. ATTACK_METHOD = "non_target_attack"
  28. tensor_dict = adversarial.train(attack_method=ATTACK_METHOD)
  29. mp.imsave('./outputs/adversarial_example.jpg',
  30. np.transpose(tensor_dict.get("adversarial_tensor").asnumpy(), (1, 2, 0)))
  31. mp.imsave('./outputs/mask.jpg',
  32. np.transpose(tensor_dict.get("mask_tensor").asnumpy(), (1, 2, 0)))
  33. mp.imsave('./outputs/input_image.jpg',
  34. np.transpose(tensor_dict.get("processed_input_tensor").asnumpy(), (1, 2, 0)))
  35. mp.imsave('./outputs/target_image.jpg',
  36. np.transpose(tensor_dict.get("processed_target_tensor").asnumpy(), (1, 2, 0)))
  37. adversarial.test_non_target_attack()

MindArmour关注AI的安全和隐私问题。致力于增强模型的安全可信、保护用户的数据隐私。主要包含3个模块:对抗样本鲁棒性模块、Fuzz Testing模块、隐私保护与评估模块。 对抗样本鲁棒性模块 对抗样本鲁棒性模块用于评估模型对于对抗样本的鲁棒性,并提供模型增强方法用于增强模型抗对抗样本攻击的能力,提升模型鲁棒性。对抗样本鲁棒性模块包含了4个子模块:对抗样本的生成、对抗样本的检测、模型防御、攻防评估。