You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_mechanisms.py 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. """
  15. different Privacy test.
  16. """
  17. import pytest
  18. from mindspore import context
  19. from mindspore import Tensor
  20. from mindspore.common import dtype as mstype
  21. from mindarmour.diff_privacy import NoiseAdaGaussianRandom
  22. from mindarmour.diff_privacy import AdaClippingWithGaussianRandom
  23. from mindarmour.diff_privacy import NoiseMechanismsFactory
  24. from mindarmour.diff_privacy import ClipMechanismsFactory
  25. @pytest.mark.level0
  26. @pytest.mark.platform_x86_ascend_training
  27. @pytest.mark.env_onecard
  28. @pytest.mark.component_mindarmour
  29. def test_graph_factory():
  30. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
  31. grad = Tensor([0.3, 0.2, 0.4], mstype.float32)
  32. norm_bound = 1.0
  33. initial_noise_multiplier = 0.1
  34. alpha = 0.5
  35. decay_policy = 'Step'
  36. factory = NoiseMechanismsFactory()
  37. noise_mech = factory.create('Gaussian',
  38. norm_bound,
  39. initial_noise_multiplier)
  40. noise = noise_mech(grad)
  41. print('Gaussian noise: ', noise)
  42. ada_noise_mech = factory.create('AdaGaussian',
  43. norm_bound,
  44. initial_noise_multiplier,
  45. noise_decay_rate=alpha,
  46. decay_policy=decay_policy)
  47. ada_noise = ada_noise_mech(grad)
  48. print('ada noise: ', ada_noise)
  49. @pytest.mark.level0
  50. @pytest.mark.platform_x86_ascend_training
  51. @pytest.mark.env_onecard
  52. @pytest.mark.component_mindarmour
  53. def test_pynative_factory():
  54. context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
  55. grad = Tensor([0.3, 0.2, 0.4], mstype.float32)
  56. norm_bound = 1.0
  57. initial_noise_multiplier = 0.1
  58. alpha = 0.5
  59. decay_policy = 'Step'
  60. factory = NoiseMechanismsFactory()
  61. noise_mech = factory.create('Gaussian',
  62. norm_bound,
  63. initial_noise_multiplier)
  64. noise = noise_mech(grad)
  65. print('Gaussian noise: ', noise)
  66. ada_noise_mech = factory.create('AdaGaussian',
  67. norm_bound,
  68. initial_noise_multiplier,
  69. noise_decay_rate=alpha,
  70. decay_policy=decay_policy)
  71. ada_noise = ada_noise_mech(grad)
  72. print('ada noise: ', ada_noise)
  73. @pytest.mark.level0
  74. @pytest.mark.platform_x86_ascend_training
  75. @pytest.mark.env_onecard
  76. @pytest.mark.component_mindarmour
  77. def test_pynative_gaussian():
  78. context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
  79. grad = Tensor([0.3, 0.2, 0.4], mstype.float32)
  80. norm_bound = 1.0
  81. initial_noise_multiplier = 0.1
  82. alpha = 0.5
  83. decay_policy = 'Step'
  84. factory = NoiseMechanismsFactory()
  85. noise_mech = factory.create('Gaussian',
  86. norm_bound,
  87. initial_noise_multiplier)
  88. noise = noise_mech(grad)
  89. print('Gaussian noise: ', noise)
  90. ada_noise_mech = factory.create('AdaGaussian',
  91. norm_bound,
  92. initial_noise_multiplier,
  93. noise_decay_rate=alpha,
  94. decay_policy=decay_policy)
  95. ada_noise = ada_noise_mech(grad)
  96. print('ada noise: ', ada_noise)
  97. @pytest.mark.level0
  98. @pytest.mark.platform_x86_ascend_training
  99. @pytest.mark.env_onecard
  100. @pytest.mark.component_mindarmour
  101. def test_graph_ada_gaussian():
  102. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
  103. grad = Tensor([0.3, 0.2, 0.4], mstype.float32)
  104. norm_bound = 1.0
  105. initial_noise_multiplier = 0.1
  106. noise_decay_rate = 0.5
  107. decay_policy = 'Step'
  108. ada_noise_mech = NoiseAdaGaussianRandom(norm_bound,
  109. initial_noise_multiplier,
  110. seed=0,
  111. noise_decay_rate=noise_decay_rate,
  112. decay_policy=decay_policy)
  113. res = ada_noise_mech(grad)
  114. print(res)
  115. @pytest.mark.level0
  116. @pytest.mark.platform_x86_ascend_training
  117. @pytest.mark.env_onecard
  118. @pytest.mark.component_mindarmour
  119. def test_pynative_ada_gaussian():
  120. context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
  121. grad = Tensor([0.3, 0.2, 0.4], mstype.float32)
  122. norm_bound = 1.0
  123. initial_noise_multiplier = 0.1
  124. noise_decay_rate = 0.5
  125. decay_policy = 'Step'
  126. ada_noise_mech = NoiseAdaGaussianRandom(norm_bound,
  127. initial_noise_multiplier,
  128. seed=0,
  129. noise_decay_rate=noise_decay_rate,
  130. decay_policy=decay_policy)
  131. res = ada_noise_mech(grad)
  132. print(res)
  133. @pytest.mark.level0
  134. @pytest.mark.platform_x86_ascend_training
  135. @pytest.mark.env_onecard
  136. @pytest.mark.component_mindarmour
  137. def test_graph_exponential():
  138. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
  139. grad = Tensor([0.3, 0.2, 0.4], mstype.float32)
  140. norm_bound = 1.0
  141. initial_noise_multiplier = 0.1
  142. alpha = 0.5
  143. decay_policy = 'Exp'
  144. factory = NoiseMechanismsFactory()
  145. ada_noise = factory.create('AdaGaussian',
  146. norm_bound,
  147. initial_noise_multiplier,
  148. noise_decay_rate=alpha,
  149. decay_policy=decay_policy)
  150. ada_noise = ada_noise(grad)
  151. print('ada noise: ', ada_noise)
  152. @pytest.mark.level0
  153. @pytest.mark.platform_x86_ascend_training
  154. @pytest.mark.env_onecard
  155. @pytest.mark.component_mindarmour
  156. def test_pynative_exponential():
  157. context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
  158. grad = Tensor([0.3, 0.2, 0.4], mstype.float32)
  159. norm_bound = 1.0
  160. initial_noise_multiplier = 0.1
  161. alpha = 0.5
  162. decay_policy = 'Exp'
  163. factory = NoiseMechanismsFactory()
  164. ada_noise = factory.create('AdaGaussian',
  165. norm_bound,
  166. initial_noise_multiplier,
  167. noise_decay_rate=alpha,
  168. decay_policy=decay_policy)
  169. ada_noise = ada_noise(grad)
  170. print('ada noise: ', ada_noise)
  171. @pytest.mark.level0
  172. @pytest.mark.platform_x86_ascend_training
  173. @pytest.mark.env_onecard
  174. @pytest.mark.component_mindarmour
  175. def test_ada_clip_gaussian_random_pynative():
  176. context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
  177. decay_policy = 'Linear'
  178. beta = Tensor(0.5, mstype.float32)
  179. norm_bound = Tensor(1.0, mstype.float32)
  180. beta_stddev = 0.1
  181. learning_rate = 0.1
  182. target_unclipped_quantile = 0.3
  183. ada_clip = AdaClippingWithGaussianRandom(decay_policy=decay_policy,
  184. learning_rate=learning_rate,
  185. target_unclipped_quantile=target_unclipped_quantile,
  186. fraction_stddev=beta_stddev,
  187. seed=1)
  188. next_norm_bound = ada_clip(beta, norm_bound)
  189. print('Liner next norm clip:', next_norm_bound)
  190. decay_policy = 'Geometric'
  191. ada_clip = AdaClippingWithGaussianRandom(decay_policy=decay_policy,
  192. learning_rate=learning_rate,
  193. target_unclipped_quantile=target_unclipped_quantile,
  194. fraction_stddev=beta_stddev,
  195. seed=1)
  196. next_norm_bound = ada_clip(beta, norm_bound)
  197. print('Geometric next norm clip:', next_norm_bound)
  198. @pytest.mark.level0
  199. @pytest.mark.platform_x86_ascend_training
  200. @pytest.mark.env_onecard
  201. @pytest.mark.component_mindarmour
  202. def test_ada_clip_gaussian_random_graph():
  203. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
  204. decay_policy = 'Linear'
  205. beta = Tensor(0.5, mstype.float32)
  206. norm_bound = Tensor(1.0, mstype.float32)
  207. beta_stddev = 0.1
  208. learning_rate = 0.1
  209. target_unclipped_quantile = 0.3
  210. ada_clip = AdaClippingWithGaussianRandom(decay_policy=decay_policy,
  211. learning_rate=learning_rate,
  212. target_unclipped_quantile=target_unclipped_quantile,
  213. fraction_stddev=beta_stddev,
  214. seed=1)
  215. next_norm_bound = ada_clip(beta, norm_bound)
  216. print('Liner next norm clip:', next_norm_bound)
  217. decay_policy = 'Geometric'
  218. ada_clip = AdaClippingWithGaussianRandom(decay_policy=decay_policy,
  219. learning_rate=learning_rate,
  220. target_unclipped_quantile=target_unclipped_quantile,
  221. fraction_stddev=beta_stddev,
  222. seed=1)
  223. next_norm_bound = ada_clip(beta, norm_bound)
  224. print('Geometric next norm clip:', next_norm_bound)
  225. @pytest.mark.level0
  226. @pytest.mark.platform_x86_ascend_training
  227. @pytest.mark.env_onecard
  228. @pytest.mark.component_mindarmour
  229. def test_pynative_clip_mech_factory():
  230. context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
  231. decay_policy = 'Linear'
  232. beta = Tensor(0.5, mstype.float32)
  233. norm_bound = Tensor(1.0, mstype.float32)
  234. beta_stddev = 0.1
  235. learning_rate = 0.1
  236. target_unclipped_quantile = 0.3
  237. factory = ClipMechanismsFactory()
  238. ada_clip = factory.create('Gaussian',
  239. decay_policy=decay_policy,
  240. learning_rate=learning_rate,
  241. target_unclipped_quantile=target_unclipped_quantile,
  242. fraction_stddev=beta_stddev)
  243. next_norm_bound = ada_clip(beta, norm_bound)
  244. print('next_norm_bound: ', next_norm_bound)
  245. @pytest.mark.level0
  246. @pytest.mark.platform_x86_ascend_training
  247. @pytest.mark.env_onecard
  248. @pytest.mark.component_mindarmour
  249. def test_graph_clip_mech_factory():
  250. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
  251. decay_policy = 'Linear'
  252. beta = Tensor(0.5, mstype.float32)
  253. norm_bound = Tensor(1.0, mstype.float32)
  254. beta_stddev = 0.1
  255. learning_rate = 0.1
  256. target_unclipped_quantile = 0.3
  257. factory = ClipMechanismsFactory()
  258. ada_clip = factory.create('Gaussian',
  259. decay_policy=decay_policy,
  260. learning_rate=learning_rate,
  261. target_unclipped_quantile=target_unclipped_quantile,
  262. fraction_stddev=beta_stddev)
  263. next_norm_bound = ada_clip(beta, norm_bound)
  264. print('next_norm_bound: ', next_norm_bound)

MindArmour关注AI的安全和隐私问题。致力于增强模型的安全可信、保护用户的数据隐私。主要包含3个模块:对抗样本鲁棒性模块、Fuzz Testing模块、隐私保护与评估模块。 对抗样本鲁棒性模块 对抗样本鲁棒性模块用于评估模型对于对抗样本的鲁棒性,并提供模型增强方法用于增强模型抗对抗样本攻击的能力,提升模型鲁棒性。对抗样本鲁棒性模块包含了4个子模块:对抗样本的生成、对抗样本的检测、模型防御、攻防评估。