diff --git a/examples/model_security/model_attacks/cv/faster_rcnn/README.md b/examples/model_security/model_attacks/cv/faster_rcnn/README.md new file mode 100644 index 0000000..92317da --- /dev/null +++ b/examples/model_security/model_attacks/cv/faster_rcnn/README.md @@ -0,0 +1,47 @@ +# Dataset + +Dataset used: [COCO2017]() + +- Dataset size:19G + - Train:18G,118000 images + - Val:1G,5000 images + - Annotations:241M,instances,captions,person_keypoints etc +- Data format:image and json files + - Note:Data will be processed in dataset.py + +# Environment Requirements + +- Install [MindSpore](https://www.mindspore.cn/install/en). + +- Download the dataset COCO2017. + +- We use COCO2017 as dataset in this example. + + Install Cython and pycocotool, and you can also install mmcv to process data. + + ``` + pip install Cython + + pip install pycocotools + + pip install mmcv==0.2.14 + ``` + + And change the COCO_ROOT and other settings you need in `config.py`. The directory structure is as follows: + + ``` + . + └─cocodataset + ├─annotations + ├─instance_train2017.json + └─instance_val2017.json + ├─val2017 + └─train2017 + ``` + +# Quick start +You can download the pre-trained model checkpoint file [here](). +``` +python coco_attack_pgd.py --ann_file [VAL_JSON_FILE] --pre_trained [PRETRAINED_CHECKPOINT_FILE] +``` +> Adversarial samples will be generated and saved as pickle file. diff --git a/examples/model_security/model_attacks/cv/faster_rcnn/coco_attack_pgd.py b/examples/model_security/model_attacks/cv/faster_rcnn/coco_attack_pgd.py new file mode 100755 index 0000000..835f07b --- /dev/null +++ b/examples/model_security/model_attacks/cv/faster_rcnn/coco_attack_pgd.py @@ -0,0 +1,135 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PGD attack for faster rcnn""" +import os +import argparse +import pickle + +from mindspore import context +from mindspore.train.serialization import load_checkpoint, load_param_into_net +from mindspore.common import set_seed +from mindspore.nn import Cell +from mindspore.ops.composite import GradOperation + +from mindarmour.adv_robustness.attacks import ProjectedGradientDescent + +from src.FasterRcnn.faster_rcnn_r50 import Faster_Rcnn_Resnet50 +from src.config import config +from src.dataset import data_to_mindrecord_byte_image, create_fasterrcnn_dataset + +# pylint: disable=locally-disabled, unused-argument, redefined-outer-name + +set_seed(1) + +parser = argparse.ArgumentParser(description='FasterRCNN attack') +parser.add_argument('--ann_file', type=str, required=True, help='Ann file path.') +parser.add_argument('--pre_trained', type=str, required=True, help='pre-trained ckpt file path for target model.') +parser.add_argument('--device_id', type=int, default=0, help='Device id, default is 0.') +parser.add_argument('--num', type=int, default=5, help='Number of adversarial examples.') +args = parser.parse_args() + +context.set_context(mode=context.GRAPH_MODE, device_target='Ascend', device_id=args.device_id) + + +class LossNet(Cell): + """loss function.""" + def construct(self, x1, x2, x3, x4, x5, x6): + return x4 + x6 + + +class WithLossCell(Cell): + """Wrap the network with loss function.""" + def __init__(self, backbone, loss_fn): + super(WithLossCell, self).__init__(auto_prefix=False) + self._backbone = backbone + self._loss_fn = loss_fn + + def construct(self, img_data, img_metas, gt_bboxes, gt_labels, gt_num): + loss1, loss2, loss3, loss4, loss5, loss6 = self._backbone(img_data, img_metas, gt_bboxes, gt_labels, gt_num) + return self._loss_fn(loss1, loss2, loss3, loss4, loss5, loss6) + + @property + def backbone_network(self): + return self._backbone + + +class GradWrapWithLoss(Cell): + """ + Construct a network to compute the gradient of loss function in \ + input space and weighted by `weight`. + """ + def __init__(self, network): + super(GradWrapWithLoss, self).__init__() + self._grad_all = GradOperation(get_all=True, sens_param=False) + self._network = network + + def construct(self, img_data, img_metas, gt_bboxes, gt_labels, gt_num): + gout = self._grad_all(self._network)(img_data, img_metas, gt_bboxes, gt_labels, gt_num) + return gout[0] + + +if __name__ == '__main__': + prefix = 'FasterRcnn_eval.mindrecord' + mindrecord_dir = config.mindrecord_dir + mindrecord_file = os.path.join(mindrecord_dir, prefix) + pre_trained = args.pre_trained + ann_file = args.ann_file + + print("CHECKING MINDRECORD FILES ...") + if not os.path.exists(mindrecord_file): + if not os.path.isdir(mindrecord_dir): + os.makedirs(mindrecord_dir) + if os.path.isdir(config.coco_root): + print("Create Mindrecord. It may take some time.") + data_to_mindrecord_byte_image("coco", False, prefix, file_num=1) + print("Create Mindrecord Done, at {}".format(mindrecord_dir)) + else: + print("coco_root not exits.") + + print('Start generate adversarial samples.') + + # build network and dataset + ds = create_fasterrcnn_dataset(mindrecord_file, batch_size=config.test_batch_size, \ + repeat_num=1, is_training=True) + net = Faster_Rcnn_Resnet50(config) + param_dict = load_checkpoint(pre_trained) + load_param_into_net(net, param_dict) + net = net.set_train() + + # build attacker + with_loss_cell = WithLossCell(net, LossNet()) + grad_with_loss_net = GradWrapWithLoss(with_loss_cell) + attack = ProjectedGradientDescent(grad_with_loss_net, bounds=None, eps=0.1) + + # generate adversarial samples + num = args.num + num_batches = num // config.test_batch_size + channel = 3 + adv_samples = [0] * (num_batches * config.test_batch_size) + adv_id = 0 + for data in ds.create_dict_iterator(num_epochs=num_batches): + img_data = data['image'] + img_metas = data['image_shape'] + gt_bboxes = data['box'] + gt_labels = data['label'] + gt_num = data['valid_num'] + + adv_img = attack.generate(img_data.asnumpy(), \ + (img_metas.asnumpy(), gt_bboxes.asnumpy(), gt_labels.asnumpy(), gt_num.asnumpy())) + for item in adv_img: + adv_samples[adv_id] = item + adv_id += 1 + + pickle.dump(adv_samples, open('adv_samples.pkl', 'wb')) + print('Generate adversarial samples complete.') diff --git a/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/__init__.py b/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/__init__.py new file mode 100644 index 0000000..cbc0a27 --- /dev/null +++ b/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/__init__.py @@ -0,0 +1,31 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""FasterRcnn Init.""" + +from .resnet50 import ResNetFea, ResidualBlockUsing +from .bbox_assign_sample import BboxAssignSample +from .bbox_assign_sample_stage2 import BboxAssignSampleForRcnn +from .fpn_neck import FeatPyramidNeck +from .proposal_generator import Proposal +from .rcnn import Rcnn +from .rpn import RPN +from .roi_align import SingleRoIExtractor +from .anchor_generator import AnchorGenerator + +__all__ = [ + "ResNetFea", "BboxAssignSample", "BboxAssignSampleForRcnn", + "FeatPyramidNeck", "Proposal", "Rcnn", + "RPN", "SingleRoIExtractor", "AnchorGenerator", "ResidualBlockUsing" +] diff --git a/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/anchor_generator.py b/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/anchor_generator.py new file mode 100644 index 0000000..666508c --- /dev/null +++ b/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/anchor_generator.py @@ -0,0 +1,84 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""FasterRcnn anchor generator.""" + +import numpy as np + +class AnchorGenerator(): + """Anchor generator for FasterRcnn.""" + def __init__(self, base_size, scales, ratios, scale_major=True, ctr=None): + """Anchor generator init method.""" + self.base_size = base_size + self.scales = np.array(scales) + self.ratios = np.array(ratios) + self.scale_major = scale_major + self.ctr = ctr + self.base_anchors = self.gen_base_anchors() + + def gen_base_anchors(self): + """Generate a single anchor.""" + w = self.base_size + h = self.base_size + if self.ctr is None: + x_ctr = 0.5 * (w - 1) + y_ctr = 0.5 * (h - 1) + else: + x_ctr, y_ctr = self.ctr + + h_ratios = np.sqrt(self.ratios) + w_ratios = 1 / h_ratios + if self.scale_major: + ws = (w * w_ratios[:, None] * self.scales[None, :]).reshape(-1) + hs = (h * h_ratios[:, None] * self.scales[None, :]).reshape(-1) + else: + ws = (w * self.scales[:, None] * w_ratios[None, :]).reshape(-1) + hs = (h * self.scales[:, None] * h_ratios[None, :]).reshape(-1) + + base_anchors = np.stack( + [ + x_ctr - 0.5 * (ws - 1), y_ctr - 0.5 * (hs - 1), + x_ctr + 0.5 * (ws - 1), y_ctr + 0.5 * (hs - 1) + ], + axis=-1).round() + + return base_anchors + + def _meshgrid(self, x, y, row_major=True): + """Generate grid.""" + xx = np.repeat(x.reshape(1, len(x)), len(y), axis=0).reshape(-1) + yy = np.repeat(y, len(x)) + if row_major: + return xx, yy + + return yy, xx + + def grid_anchors(self, featmap_size, stride=16): + """Generate anchor list.""" + base_anchors = self.base_anchors + + feat_h, feat_w = featmap_size + shift_x = np.arange(0, feat_w) * stride + shift_y = np.arange(0, feat_h) * stride + shift_xx, shift_yy = self._meshgrid(shift_x, shift_y) + shifts = np.stack([shift_xx, shift_yy, shift_xx, shift_yy], axis=-1) + shifts = shifts.astype(base_anchors.dtype) + # first feat_w elements correspond to the first row of shifts + # add A anchors (1, A, 4) to K shifts (K, 1, 4) to get + # shifted anchors (K, A, 4), reshape to (K*A, 4) + + all_anchors = base_anchors[None, :, :] + shifts[:, None, :] + all_anchors = all_anchors.reshape(-1, 4) + + return all_anchors diff --git a/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/bbox_assign_sample.py b/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/bbox_assign_sample.py new file mode 100644 index 0000000..2645edf --- /dev/null +++ b/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/bbox_assign_sample.py @@ -0,0 +1,166 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""FasterRcnn positive and negative sample screening for RPN.""" + +import numpy as np +import mindspore.nn as nn +from mindspore.ops import operations as P +from mindspore.common.tensor import Tensor +import mindspore.common.dtype as mstype + +# pylint: disable=locally-disabled, invalid-name, missing-docstring + + +class BboxAssignSample(nn.Cell): + """ + Bbox assigner and sampler defination. + + Args: + config (dict): Config. + batch_size (int): Batchsize. + num_bboxes (int): The anchor nums. + add_gt_as_proposals (bool): add gt bboxes as proposals flag. + + Returns: + Tensor, output tensor. + bbox_targets: bbox location, (batch_size, num_bboxes, 4) + bbox_weights: bbox weights, (batch_size, num_bboxes, 1) + labels: label for every bboxes, (batch_size, num_bboxes, 1) + label_weights: label weight for every bboxes, (batch_size, num_bboxes, 1) + + Examples: + BboxAssignSample(config, 2, 1024, True) + """ + + def __init__(self, config, batch_size, num_bboxes, add_gt_as_proposals): + super(BboxAssignSample, self).__init__() + cfg = config + self.batch_size = batch_size + + self.neg_iou_thr = Tensor(cfg.neg_iou_thr, mstype.float16) + self.pos_iou_thr = Tensor(cfg.pos_iou_thr, mstype.float16) + self.min_pos_iou = Tensor(cfg.min_pos_iou, mstype.float16) + self.zero_thr = Tensor(0.0, mstype.float16) + + self.num_bboxes = num_bboxes + self.num_gts = cfg.num_gts + self.num_expected_pos = cfg.num_expected_pos + self.num_expected_neg = cfg.num_expected_neg + self.add_gt_as_proposals = add_gt_as_proposals + + if self.add_gt_as_proposals: + self.label_inds = Tensor(np.arange(1, self.num_gts + 1)) + + self.concat = P.Concat(axis=0) + self.max_gt = P.ArgMaxWithValue(axis=0) + self.max_anchor = P.ArgMaxWithValue(axis=1) + self.sum_inds = P.ReduceSum() + self.iou = P.IOU() + self.greaterequal = P.GreaterEqual() + self.greater = P.Greater() + self.select = P.Select() + self.gatherND = P.GatherNd() + self.squeeze = P.Squeeze() + self.cast = P.Cast() + self.logicaland = P.LogicalAnd() + self.less = P.Less() + self.random_choice_with_mask_pos = P.RandomChoiceWithMask(self.num_expected_pos) + self.random_choice_with_mask_neg = P.RandomChoiceWithMask(self.num_expected_neg) + self.reshape = P.Reshape() + self.equal = P.Equal() + self.bounding_box_encode = P.BoundingBoxEncode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0)) + self.scatterNdUpdate = P.ScatterNdUpdate() + self.scatterNd = P.ScatterNd() + self.logicalnot = P.LogicalNot() + self.tile = P.Tile() + self.zeros_like = P.ZerosLike() + + self.assigned_gt_inds = Tensor(np.array(-1 * np.ones(num_bboxes), dtype=np.int32)) + self.assigned_gt_zeros = Tensor(np.array(np.zeros(num_bboxes), dtype=np.int32)) + self.assigned_gt_ones = Tensor(np.array(np.ones(num_bboxes), dtype=np.int32)) + self.assigned_gt_ignores = Tensor(np.array(-1 * np.ones(num_bboxes), dtype=np.int32)) + self.assigned_pos_ones = Tensor(np.array(np.ones(self.num_expected_pos), dtype=np.int32)) + + self.check_neg_mask = Tensor(np.array(np.ones(self.num_expected_neg - self.num_expected_pos), dtype=np.bool)) + self.range_pos_size = Tensor(np.arange(self.num_expected_pos).astype(np.float16)) + self.check_gt_one = Tensor(np.array(-1 * np.ones((self.num_gts, 4)), dtype=np.float16)) + self.check_anchor_two = Tensor(np.array(-2 * np.ones((self.num_bboxes, 4)), dtype=np.float16)) + + + def construct(self, gt_bboxes_i, gt_labels_i, valid_mask, bboxes, gt_valids): + gt_bboxes_i = self.select(self.cast(self.tile(self.reshape(self.cast(gt_valids, mstype.int32), \ + (self.num_gts, 1)), (1, 4)), mstype.bool_), gt_bboxes_i, self.check_gt_one) + bboxes = self.select(self.cast(self.tile(self.reshape(self.cast(valid_mask, mstype.int32), \ + (self.num_bboxes, 1)), (1, 4)), mstype.bool_), bboxes, self.check_anchor_two) + + overlaps = self.iou(bboxes, gt_bboxes_i) + + max_overlaps_w_gt_index, max_overlaps_w_gt = self.max_gt(overlaps) + _, max_overlaps_w_ac = self.max_anchor(overlaps) + + neg_sample_iou_mask = self.logicaland(self.greaterequal(max_overlaps_w_gt, self.zero_thr), \ + self.less(max_overlaps_w_gt, self.neg_iou_thr)) + assigned_gt_inds2 = self.select(neg_sample_iou_mask, self.assigned_gt_zeros, self.assigned_gt_inds) + + pos_sample_iou_mask = self.greaterequal(max_overlaps_w_gt, self.pos_iou_thr) + assigned_gt_inds3 = self.select(pos_sample_iou_mask, \ + max_overlaps_w_gt_index + self.assigned_gt_ones, assigned_gt_inds2) + assigned_gt_inds4 = assigned_gt_inds3 + for j in range(self.num_gts): + max_overlaps_w_ac_j = max_overlaps_w_ac[j:j+1:1] + overlaps_w_gt_j = self.squeeze(overlaps[j:j+1:1, ::]) + + pos_mask_j = self.logicaland(self.greaterequal(max_overlaps_w_ac_j, self.min_pos_iou), \ + self.equal(overlaps_w_gt_j, max_overlaps_w_ac_j)) + + assigned_gt_inds4 = self.select(pos_mask_j, self.assigned_gt_ones + j, assigned_gt_inds4) + + assigned_gt_inds5 = self.select(valid_mask, assigned_gt_inds4, self.assigned_gt_ignores) + + pos_index, valid_pos_index = self.random_choice_with_mask_pos(self.greater(assigned_gt_inds5, 0)) + + pos_check_valid = self.cast(self.greater(assigned_gt_inds5, 0), mstype.float16) + pos_check_valid = self.sum_inds(pos_check_valid, -1) + valid_pos_index = self.less(self.range_pos_size, pos_check_valid) + pos_index = pos_index * self.reshape(self.cast(valid_pos_index, mstype.int32), (self.num_expected_pos, 1)) + + pos_assigned_gt_index = self.gatherND(assigned_gt_inds5, pos_index) - self.assigned_pos_ones + pos_assigned_gt_index = pos_assigned_gt_index * self.cast(valid_pos_index, mstype.int32) + pos_assigned_gt_index = self.reshape(pos_assigned_gt_index, (self.num_expected_pos, 1)) + + neg_index, valid_neg_index = self.random_choice_with_mask_neg(self.equal(assigned_gt_inds5, 0)) + + num_pos = self.cast(self.logicalnot(valid_pos_index), mstype.float16) + num_pos = self.sum_inds(num_pos, -1) + unvalid_pos_index = self.less(self.range_pos_size, num_pos) + valid_neg_index = self.logicaland(self.concat((self.check_neg_mask, unvalid_pos_index)), valid_neg_index) + + pos_bboxes_ = self.gatherND(bboxes, pos_index) + pos_gt_bboxes_ = self.gatherND(gt_bboxes_i, pos_assigned_gt_index) + pos_gt_labels = self.gatherND(gt_labels_i, pos_assigned_gt_index) + + pos_bbox_targets_ = self.bounding_box_encode(pos_bboxes_, pos_gt_bboxes_) + + valid_pos_index = self.cast(valid_pos_index, mstype.int32) + valid_neg_index = self.cast(valid_neg_index, mstype.int32) + bbox_targets_total = self.scatterNd(pos_index, pos_bbox_targets_, (self.num_bboxes, 4)) + bbox_weights_total = self.scatterNd(pos_index, valid_pos_index, (self.num_bboxes,)) + labels_total = self.scatterNd(pos_index, pos_gt_labels, (self.num_bboxes,)) + total_index = self.concat((pos_index, neg_index)) + total_valid_index = self.concat((valid_pos_index, valid_neg_index)) + label_weights_total = self.scatterNd(total_index, total_valid_index, (self.num_bboxes,)) + + return bbox_targets_total, self.cast(bbox_weights_total, mstype.bool_), \ + labels_total, self.cast(label_weights_total, mstype.bool_) diff --git a/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/bbox_assign_sample_stage2.py b/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/bbox_assign_sample_stage2.py new file mode 100644 index 0000000..6fbc075 --- /dev/null +++ b/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/bbox_assign_sample_stage2.py @@ -0,0 +1,197 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""FasterRcnn tpositive and negative sample screening for Rcnn.""" + +import numpy as np +import mindspore.nn as nn +import mindspore.common.dtype as mstype +from mindspore.ops import operations as P +from mindspore.common.tensor import Tensor + +# pylint: disable=locally-disabled, invalid-name, missing-docstring + + +class BboxAssignSampleForRcnn(nn.Cell): + """ + Bbox assigner and sampler defination. + + Args: + config (dict): Config. + batch_size (int): Batchsize. + num_bboxes (int): The anchor nums. + add_gt_as_proposals (bool): add gt bboxes as proposals flag. + + Returns: + Tensor, output tensor. + bbox_targets: bbox location, (batch_size, num_bboxes, 4) + bbox_weights: bbox weights, (batch_size, num_bboxes, 1) + labels: label for every bboxes, (batch_size, num_bboxes, 1) + label_weights: label weight for every bboxes, (batch_size, num_bboxes, 1) + + Examples: + BboxAssignSampleForRcnn(config, 2, 1024, True) + """ + + def __init__(self, config, batch_size, num_bboxes, add_gt_as_proposals): + super(BboxAssignSampleForRcnn, self).__init__() + cfg = config + self.batch_size = batch_size + self.neg_iou_thr = cfg.neg_iou_thr_stage2 + self.pos_iou_thr = cfg.pos_iou_thr_stage2 + self.min_pos_iou = cfg.min_pos_iou_stage2 + self.num_gts = cfg.num_gts + self.num_bboxes = num_bboxes + self.num_expected_pos = cfg.num_expected_pos_stage2 + self.num_expected_neg = cfg.num_expected_neg_stage2 + self.num_expected_total = cfg.num_expected_total_stage2 + + self.add_gt_as_proposals = add_gt_as_proposals + self.label_inds = Tensor(np.arange(1, self.num_gts + 1).astype(np.int32)) + self.add_gt_as_proposals_valid = Tensor(np.array(self.add_gt_as_proposals * np.ones(self.num_gts), + dtype=np.int32)) + + self.concat = P.Concat(axis=0) + self.max_gt = P.ArgMaxWithValue(axis=0) + self.max_anchor = P.ArgMaxWithValue(axis=1) + self.sum_inds = P.ReduceSum() + self.iou = P.IOU() + self.greaterequal = P.GreaterEqual() + self.greater = P.Greater() + self.select = P.Select() + self.gatherND = P.GatherNd() + self.squeeze = P.Squeeze() + self.cast = P.Cast() + self.logicaland = P.LogicalAnd() + self.less = P.Less() + self.random_choice_with_mask_pos = P.RandomChoiceWithMask(self.num_expected_pos) + self.random_choice_with_mask_neg = P.RandomChoiceWithMask(self.num_expected_neg) + self.reshape = P.Reshape() + self.equal = P.Equal() + self.bounding_box_encode = P.BoundingBoxEncode(means=(0.0, 0.0, 0.0, 0.0), stds=(0.1, 0.1, 0.2, 0.2)) + self.concat_axis1 = P.Concat(axis=1) + self.logicalnot = P.LogicalNot() + self.tile = P.Tile() + + # Check + self.check_gt_one = Tensor(np.array(-1 * np.ones((self.num_gts, 4)), dtype=np.float16)) + self.check_anchor_two = Tensor(np.array(-2 * np.ones((self.num_bboxes, 4)), dtype=np.float16)) + + # Init tensor + self.assigned_gt_inds = Tensor(np.array(-1 * np.ones(num_bboxes), dtype=np.int32)) + self.assigned_gt_zeros = Tensor(np.array(np.zeros(num_bboxes), dtype=np.int32)) + self.assigned_gt_ones = Tensor(np.array(np.ones(num_bboxes), dtype=np.int32)) + self.assigned_gt_ignores = Tensor(np.array(-1 * np.ones(num_bboxes), dtype=np.int32)) + self.assigned_pos_ones = Tensor(np.array(np.ones(self.num_expected_pos), dtype=np.int32)) + + self.gt_ignores = Tensor(np.array(-1 * np.ones(self.num_gts), dtype=np.int32)) + self.range_pos_size = Tensor(np.arange(self.num_expected_pos).astype(np.float16)) + self.check_neg_mask = Tensor(np.array(np.ones(self.num_expected_neg - self.num_expected_pos), dtype=np.bool)) + self.bboxs_neg_mask = Tensor(np.zeros((self.num_expected_neg, 4), dtype=np.float16)) + self.labels_neg_mask = Tensor(np.array(np.zeros(self.num_expected_neg), dtype=np.uint8)) + + self.reshape_shape_pos = (self.num_expected_pos, 1) + self.reshape_shape_neg = (self.num_expected_neg, 1) + + self.scalar_zero = Tensor(0.0, dtype=mstype.float16) + self.scalar_neg_iou_thr = Tensor(self.neg_iou_thr, dtype=mstype.float16) + self.scalar_pos_iou_thr = Tensor(self.pos_iou_thr, dtype=mstype.float16) + self.scalar_min_pos_iou = Tensor(self.min_pos_iou, dtype=mstype.float16) + + def construct(self, gt_bboxes_i, gt_labels_i, valid_mask, bboxes, gt_valids): + gt_bboxes_i = self.select(self.cast(self.tile(self.reshape(self.cast(gt_valids, mstype.int32), \ + (self.num_gts, 1)), (1, 4)), mstype.bool_), \ + gt_bboxes_i, self.check_gt_one) + bboxes = self.select(self.cast(self.tile(self.reshape(self.cast(valid_mask, mstype.int32), \ + (self.num_bboxes, 1)), (1, 4)), mstype.bool_), \ + bboxes, self.check_anchor_two) + + overlaps = self.iou(bboxes, gt_bboxes_i) + + max_overlaps_w_gt_index, max_overlaps_w_gt = self.max_gt(overlaps) + _, max_overlaps_w_ac = self.max_anchor(overlaps) + + neg_sample_iou_mask = self.logicaland(self.greaterequal(max_overlaps_w_gt, + self.scalar_zero), + self.less(max_overlaps_w_gt, + self.scalar_neg_iou_thr)) + + assigned_gt_inds2 = self.select(neg_sample_iou_mask, self.assigned_gt_zeros, self.assigned_gt_inds) + + pos_sample_iou_mask = self.greaterequal(max_overlaps_w_gt, self.scalar_pos_iou_thr) + assigned_gt_inds3 = self.select(pos_sample_iou_mask, \ + max_overlaps_w_gt_index + self.assigned_gt_ones, assigned_gt_inds2) + + for j in range(self.num_gts): + max_overlaps_w_ac_j = max_overlaps_w_ac[j:j+1:1] + overlaps_w_ac_j = overlaps[j:j+1:1, ::] + temp1 = self.greaterequal(max_overlaps_w_ac_j, self.scalar_min_pos_iou) + temp2 = self.squeeze(self.equal(overlaps_w_ac_j, max_overlaps_w_ac_j)) + pos_mask_j = self.logicaland(temp1, temp2) + assigned_gt_inds3 = self.select(pos_mask_j, (j+1)*self.assigned_gt_ones, assigned_gt_inds3) + + assigned_gt_inds5 = self.select(valid_mask, assigned_gt_inds3, self.assigned_gt_ignores) + + bboxes = self.concat((gt_bboxes_i, bboxes)) + label_inds_valid = self.select(gt_valids, self.label_inds, self.gt_ignores) + label_inds_valid = label_inds_valid * self.add_gt_as_proposals_valid + assigned_gt_inds5 = self.concat((label_inds_valid, assigned_gt_inds5)) + + # Get pos index + pos_index, valid_pos_index = self.random_choice_with_mask_pos(self.greater(assigned_gt_inds5, 0)) + + pos_check_valid = self.cast(self.greater(assigned_gt_inds5, 0), mstype.float16) + pos_check_valid = self.sum_inds(pos_check_valid, -1) + valid_pos_index = self.less(self.range_pos_size, pos_check_valid) + pos_index = pos_index * self.reshape(self.cast(valid_pos_index, mstype.int32), (self.num_expected_pos, 1)) + + num_pos = self.sum_inds(self.cast(self.logicalnot(valid_pos_index), mstype.float16), -1) + valid_pos_index = self.cast(valid_pos_index, mstype.int32) + pos_index = self.reshape(pos_index, self.reshape_shape_pos) + valid_pos_index = self.reshape(valid_pos_index, self.reshape_shape_pos) + pos_index = pos_index * valid_pos_index + + pos_assigned_gt_index = self.gatherND(assigned_gt_inds5, pos_index) - self.assigned_pos_ones + pos_assigned_gt_index = self.reshape(pos_assigned_gt_index, self.reshape_shape_pos) + pos_assigned_gt_index = pos_assigned_gt_index * valid_pos_index + + pos_gt_labels = self.gatherND(gt_labels_i, pos_assigned_gt_index) + + # Get neg index + neg_index, valid_neg_index = self.random_choice_with_mask_neg(self.equal(assigned_gt_inds5, 0)) + + unvalid_pos_index = self.less(self.range_pos_size, num_pos) + valid_neg_index = self.logicaland(self.concat((self.check_neg_mask, unvalid_pos_index)), valid_neg_index) + neg_index = self.reshape(neg_index, self.reshape_shape_neg) + + valid_neg_index = self.cast(valid_neg_index, mstype.int32) + valid_neg_index = self.reshape(valid_neg_index, self.reshape_shape_neg) + neg_index = neg_index * valid_neg_index + + pos_bboxes_ = self.gatherND(bboxes, pos_index) + + neg_bboxes_ = self.gatherND(bboxes, neg_index) + pos_assigned_gt_index = self.reshape(pos_assigned_gt_index, self.reshape_shape_pos) + pos_gt_bboxes_ = self.gatherND(gt_bboxes_i, pos_assigned_gt_index) + pos_bbox_targets_ = self.bounding_box_encode(pos_bboxes_, pos_gt_bboxes_) + + total_bboxes = self.concat((pos_bboxes_, neg_bboxes_)) + total_deltas = self.concat((pos_bbox_targets_, self.bboxs_neg_mask)) + total_labels = self.concat((pos_gt_labels, self.labels_neg_mask)) + + valid_pos_index = self.reshape(valid_pos_index, self.reshape_shape_pos) + valid_neg_index = self.reshape(valid_neg_index, self.reshape_shape_neg) + total_mask = self.concat((valid_pos_index, valid_neg_index)) + + return total_bboxes, total_deltas, total_labels, total_mask diff --git a/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/faster_rcnn_r50.py b/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/faster_rcnn_r50.py new file mode 100644 index 0000000..891b030 --- /dev/null +++ b/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/faster_rcnn_r50.py @@ -0,0 +1,428 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""FasterRcnn based on ResNet50.""" + +import numpy as np +import mindspore.nn as nn +from mindspore.ops import operations as P +from mindspore.common.tensor import Tensor +import mindspore.common.dtype as mstype +from mindspore.ops import functional as F +from .resnet50 import ResNetFea, ResidualBlockUsing +from .bbox_assign_sample_stage2 import BboxAssignSampleForRcnn +from .fpn_neck import FeatPyramidNeck +from .proposal_generator import Proposal +from .rcnn import Rcnn +from .rpn import RPN +from .roi_align import SingleRoIExtractor +from .anchor_generator import AnchorGenerator + +# pylint: disable=locally-disabled, invalid-name, missing-docstring + + +class Faster_Rcnn_Resnet50(nn.Cell): + """ + FasterRcnn Network. + + Note: + backbone = resnet50 + + Returns: + Tuple, tuple of output tensor. + rpn_loss: Scalar, Total loss of RPN subnet. + rcnn_loss: Scalar, Total loss of RCNN subnet. + rpn_cls_loss: Scalar, Classification loss of RPN subnet. + rpn_reg_loss: Scalar, Regression loss of RPN subnet. + rcnn_cls_loss: Scalar, Classification loss of RCNN subnet. + rcnn_reg_loss: Scalar, Regression loss of RCNN subnet. + + Examples: + net = Faster_Rcnn_Resnet50() + """ + def __init__(self, config): + super(Faster_Rcnn_Resnet50, self).__init__() + self.train_batch_size = config.batch_size + self.num_classes = config.num_classes + self.anchor_scales = config.anchor_scales + self.anchor_ratios = config.anchor_ratios + self.anchor_strides = config.anchor_strides + self.target_means = tuple(config.rcnn_target_means) + self.target_stds = tuple(config.rcnn_target_stds) + + # Anchor generator + anchor_base_sizes = None + self.anchor_base_sizes = list( + self.anchor_strides) if anchor_base_sizes is None else anchor_base_sizes + + self.anchor_generators = [] + for anchor_base in self.anchor_base_sizes: + self.anchor_generators.append( + AnchorGenerator(anchor_base, self.anchor_scales, self.anchor_ratios)) + + self.num_anchors = len(self.anchor_ratios) * len(self.anchor_scales) + + featmap_sizes = config.feature_shapes + assert len(featmap_sizes) == len(self.anchor_generators) + + self.anchor_list = self.get_anchors(featmap_sizes) + + # Backbone resnet50 + self.backbone = ResNetFea(ResidualBlockUsing, + config.resnet_block, + config.resnet_in_channels, + config.resnet_out_channels, + False) + + # Fpn + self.fpn_ncek = FeatPyramidNeck(config.fpn_in_channels, + config.fpn_out_channels, + config.fpn_num_outs) + + # Rpn and rpn loss + self.gt_labels_stage1 = Tensor(np.ones((self.train_batch_size, config.num_gts)).astype(np.uint8)) + self.rpn_with_loss = RPN(config, + self.train_batch_size, + config.rpn_in_channels, + config.rpn_feat_channels, + config.num_anchors, + config.rpn_cls_out_channels) + + # Proposal + self.proposal_generator = Proposal(config, + self.train_batch_size, + config.activate_num_classes, + config.use_sigmoid_cls) + self.proposal_generator.set_train_local(config, True) + self.proposal_generator_test = Proposal(config, + config.test_batch_size, + config.activate_num_classes, + config.use_sigmoid_cls) + self.proposal_generator_test.set_train_local(config, False) + + # Assign and sampler stage two + self.bbox_assigner_sampler_for_rcnn = BboxAssignSampleForRcnn(config, self.train_batch_size, + config.num_bboxes_stage2, True) + self.decode = P.BoundingBoxDecode(max_shape=(768, 1280), means=self.target_means, \ + stds=self.target_stds) + + # Roi + self.roi_align = SingleRoIExtractor(config, + config.roi_layer, + config.roi_align_out_channels, + config.roi_align_featmap_strides, + self.train_batch_size, + config.roi_align_finest_scale) + self.roi_align.set_train_local(config, True) + self.roi_align_test = SingleRoIExtractor(config, + config.roi_layer, + config.roi_align_out_channels, + config.roi_align_featmap_strides, + 1, + config.roi_align_finest_scale) + self.roi_align_test.set_train_local(config, False) + + # Rcnn + self.rcnn = Rcnn(config, config.rcnn_in_channels * config.roi_layer['out_size'] * config.roi_layer['out_size'], + self.train_batch_size, self.num_classes) + + # Op declare + self.squeeze = P.Squeeze() + self.cast = P.Cast() + + self.concat = P.Concat(axis=0) + self.concat_1 = P.Concat(axis=1) + self.concat_2 = P.Concat(axis=2) + self.reshape = P.Reshape() + self.select = P.Select() + self.greater = P.Greater() + self.transpose = P.Transpose() + + # Test mode + self.test_batch_size = config.test_batch_size + self.split = P.Split(axis=0, output_num=self.test_batch_size) + self.split_shape = P.Split(axis=0, output_num=4) + self.split_scores = P.Split(axis=1, output_num=self.num_classes) + self.split_cls = P.Split(axis=0, output_num=self.num_classes-1) + self.tile = P.Tile() + self.gather = P.GatherNd() + + self.rpn_max_num = config.rpn_max_num + + self.zeros_for_nms = Tensor(np.zeros((self.rpn_max_num, 3)).astype(np.float16)) + self.ones_mask = np.ones((self.rpn_max_num, 1)).astype(np.bool) + self.zeros_mask = np.zeros((self.rpn_max_num, 1)).astype(np.bool) + self.bbox_mask = Tensor(np.concatenate((self.ones_mask, self.zeros_mask, + self.ones_mask, self.zeros_mask), axis=1)) + self.nms_pad_mask = Tensor(np.concatenate((self.ones_mask, self.ones_mask, + self.ones_mask, self.ones_mask, self.zeros_mask), axis=1)) + + self.test_score_thresh = Tensor(np.ones((self.rpn_max_num, 1)).astype(np.float16) * config.test_score_thr) + self.test_score_zeros = Tensor(np.ones((self.rpn_max_num, 1)).astype(np.float16) * 0) + self.test_box_zeros = Tensor(np.ones((self.rpn_max_num, 4)).astype(np.float16) * -1) + self.test_iou_thr = Tensor(np.ones((self.rpn_max_num, 1)).astype(np.float16) * config.test_iou_thr) + self.test_max_per_img = config.test_max_per_img + self.nms_test = P.NMSWithMask(config.test_iou_thr) + self.softmax = P.Softmax(axis=1) + self.logicand = P.LogicalAnd() + self.oneslike = P.OnesLike() + self.test_topk = P.TopK(sorted=True) + self.test_num_proposal = self.test_batch_size * self.rpn_max_num + + # Improve speed + self.concat_start = min(self.num_classes - 2, 55) + self.concat_end = (self.num_classes - 1) + + # Init tensor + roi_align_index = [np.array(np.ones((config.num_expected_pos_stage2 + config.num_expected_neg_stage2, 1)) * i, + dtype=np.float16) for i in range(self.train_batch_size)] + + roi_align_index_test = [np.array(np.ones((config.rpn_max_num, 1)) * i, dtype=np.float16) \ + for i in range(self.test_batch_size)] + + self.roi_align_index_tensor = Tensor(np.concatenate(roi_align_index)) + self.roi_align_index_test_tensor = Tensor(np.concatenate(roi_align_index_test)) + + def construct(self, img_data, img_metas, gt_bboxes, gt_labels, gt_valids): + x = self.backbone(img_data) + x = self.fpn_ncek(x) + + rpn_loss, cls_score, bbox_pred, rpn_cls_loss, rpn_reg_loss, _ = self.rpn_with_loss(x, + img_metas, + self.anchor_list, + gt_bboxes, + self.gt_labels_stage1, + gt_valids) + + if self.training: + proposal, proposal_mask = self.proposal_generator(cls_score, bbox_pred, self.anchor_list) + else: + proposal, proposal_mask = self.proposal_generator_test(cls_score, bbox_pred, self.anchor_list) + + gt_labels = self.cast(gt_labels, mstype.int32) + gt_valids = self.cast(gt_valids, mstype.int32) + bboxes_tuple = () + deltas_tuple = () + labels_tuple = () + mask_tuple = () + if self.training: + for i in range(self.train_batch_size): + gt_bboxes_i = self.squeeze(gt_bboxes[i:i + 1:1, ::]) + + gt_labels_i = self.squeeze(gt_labels[i:i + 1:1, ::]) + gt_labels_i = self.cast(gt_labels_i, mstype.uint8) + + gt_valids_i = self.squeeze(gt_valids[i:i + 1:1, ::]) + gt_valids_i = self.cast(gt_valids_i, mstype.bool_) + + bboxes, deltas, labels, mask = self.bbox_assigner_sampler_for_rcnn(gt_bboxes_i, + gt_labels_i, + proposal_mask[i], + proposal[i][::, 0:4:1], + gt_valids_i) + bboxes_tuple += (bboxes,) + deltas_tuple += (deltas,) + labels_tuple += (labels,) + mask_tuple += (mask,) + + bbox_targets = self.concat(deltas_tuple) + rcnn_labels = self.concat(labels_tuple) + bbox_targets = F.stop_gradient(bbox_targets) + rcnn_labels = F.stop_gradient(rcnn_labels) + rcnn_labels = self.cast(rcnn_labels, mstype.int32) + else: + mask_tuple += proposal_mask + bbox_targets = proposal_mask + rcnn_labels = proposal_mask + for p_i in proposal: + bboxes_tuple += (p_i[::, 0:4:1],) + + if self.training: + if self.train_batch_size > 1: + bboxes_all = self.concat(bboxes_tuple) + else: + bboxes_all = bboxes_tuple[0] + rois = self.concat_1((self.roi_align_index_tensor, bboxes_all)) + else: + if self.test_batch_size > 1: + bboxes_all = self.concat(bboxes_tuple) + else: + bboxes_all = bboxes_tuple[0] + rois = self.concat_1((self.roi_align_index_test_tensor, bboxes_all)) + + + rois = self.cast(rois, mstype.float32) + rois = F.stop_gradient(rois) + + if self.training: + roi_feats = self.roi_align(rois, + self.cast(x[0], mstype.float32), + self.cast(x[1], mstype.float32), + self.cast(x[2], mstype.float32), + self.cast(x[3], mstype.float32)) + else: + roi_feats = self.roi_align_test(rois, + self.cast(x[0], mstype.float32), + self.cast(x[1], mstype.float32), + self.cast(x[2], mstype.float32), + self.cast(x[3], mstype.float32)) + + + roi_feats = self.cast(roi_feats, mstype.float16) + rcnn_masks = self.concat(mask_tuple) + rcnn_masks = F.stop_gradient(rcnn_masks) + rcnn_mask_squeeze = self.squeeze(self.cast(rcnn_masks, mstype.bool_)) + rcnn_loss, rcnn_cls_loss, rcnn_reg_loss, _ = self.rcnn(roi_feats, + bbox_targets, + rcnn_labels, + rcnn_mask_squeeze) + + output = () + if self.training: + output += (rpn_loss, rcnn_loss, rpn_cls_loss, rpn_reg_loss, rcnn_cls_loss, rcnn_reg_loss) + else: + output = self.get_det_bboxes(rcnn_cls_loss, rcnn_reg_loss, rcnn_masks, bboxes_all, img_metas) + + return output + + def get_det_bboxes(self, cls_logits, reg_logits, mask_logits, rois, img_metas): + """Get the actual detection box.""" + scores = self.softmax(cls_logits) + + boxes_all = () + for i in range(self.num_classes): + k = i * 4 + reg_logits_i = self.squeeze(reg_logits[::, k:k+4:1]) + out_boxes_i = self.decode(rois, reg_logits_i) + boxes_all += (out_boxes_i,) + + img_metas_all = self.split(img_metas) + scores_all = self.split(scores) + mask_all = self.split(self.cast(mask_logits, mstype.int32)) + + boxes_all_with_batchsize = () + for i in range(self.test_batch_size): + scale = self.split_shape(self.squeeze(img_metas_all[i])) + scale_h = scale[2] + scale_w = scale[3] + boxes_tuple = () + for j in range(self.num_classes): + boxes_tmp = self.split(boxes_all[j]) + out_boxes_h = boxes_tmp[i] / scale_h + out_boxes_w = boxes_tmp[i] / scale_w + boxes_tuple += (self.select(self.bbox_mask, out_boxes_w, out_boxes_h),) + boxes_all_with_batchsize += (boxes_tuple,) + + output = self.multiclass_nms(boxes_all_with_batchsize, scores_all, mask_all) + + return output + + def multiclass_nms(self, boxes_all, scores_all, mask_all): + """Multiscale postprocessing.""" + all_bboxes = () + all_labels = () + all_masks = () + + for i in range(self.test_batch_size): + bboxes = boxes_all[i] + scores = scores_all[i] + masks = self.cast(mask_all[i], mstype.bool_) + + res_boxes_tuple = () + res_labels_tuple = () + res_masks_tuple = () + + for j in range(self.num_classes - 1): + k = j + 1 + _cls_scores = scores[::, k:k + 1:1] + _bboxes = self.squeeze(bboxes[k]) + _mask_o = self.reshape(masks, (self.rpn_max_num, 1)) + + cls_mask = self.greater(_cls_scores, self.test_score_thresh) + _mask = self.logicand(_mask_o, cls_mask) + + _reg_mask = self.cast(self.tile(self.cast(_mask, mstype.int32), (1, 4)), mstype.bool_) + + _bboxes = self.select(_reg_mask, _bboxes, self.test_box_zeros) + _cls_scores = self.select(_mask, _cls_scores, self.test_score_zeros) + __cls_scores = self.squeeze(_cls_scores) + scores_sorted, topk_inds = self.test_topk(__cls_scores, self.rpn_max_num) + topk_inds = self.reshape(topk_inds, (self.rpn_max_num, 1)) + scores_sorted = self.reshape(scores_sorted, (self.rpn_max_num, 1)) + _bboxes_sorted = self.gather(_bboxes, topk_inds) + _mask_sorted = self.gather(_mask, topk_inds) + + scores_sorted = self.tile(scores_sorted, (1, 4)) + cls_dets = self.concat_1((_bboxes_sorted, scores_sorted)) + cls_dets = P.Slice()(cls_dets, (0, 0), (self.rpn_max_num, 5)) + + cls_dets, _index, _mask_nms = self.nms_test(cls_dets) + _index = self.reshape(_index, (self.rpn_max_num, 1)) + _mask_nms = self.reshape(_mask_nms, (self.rpn_max_num, 1)) + + _mask_n = self.gather(_mask_sorted, _index) + + _mask_n = self.logicand(_mask_n, _mask_nms) + cls_labels = self.oneslike(_index) * j + res_boxes_tuple += (cls_dets,) + res_labels_tuple += (cls_labels,) + res_masks_tuple += (_mask_n,) + + res_boxes_start = self.concat(res_boxes_tuple[:self.concat_start]) + res_labels_start = self.concat(res_labels_tuple[:self.concat_start]) + res_masks_start = self.concat(res_masks_tuple[:self.concat_start]) + + res_boxes_end = self.concat(res_boxes_tuple[self.concat_start:self.concat_end]) + res_labels_end = self.concat(res_labels_tuple[self.concat_start:self.concat_end]) + res_masks_end = self.concat(res_masks_tuple[self.concat_start:self.concat_end]) + + res_boxes = self.concat((res_boxes_start, res_boxes_end)) + res_labels = self.concat((res_labels_start, res_labels_end)) + res_masks = self.concat((res_masks_start, res_masks_end)) + + reshape_size = (self.num_classes - 1) * self.rpn_max_num + res_boxes = self.reshape(res_boxes, (1, reshape_size, 5)) + res_labels = self.reshape(res_labels, (1, reshape_size, 1)) + res_masks = self.reshape(res_masks, (1, reshape_size, 1)) + + all_bboxes += (res_boxes,) + all_labels += (res_labels,) + all_masks += (res_masks,) + + all_bboxes = self.concat(all_bboxes) + all_labels = self.concat(all_labels) + all_masks = self.concat(all_masks) + return all_bboxes, all_labels, all_masks + + def get_anchors(self, featmap_sizes): + """Get anchors according to feature map sizes. + + Args: + featmap_sizes (list[tuple]): Multi-level feature map sizes. + img_metas (list[dict]): Image meta info. + + Returns: + tuple: anchors of each image, valid flags of each image + """ + num_levels = len(featmap_sizes) + + # since feature map sizes of all images are the same, we only compute + # anchors for one time + multi_level_anchors = () + for i in range(num_levels): + anchors = self.anchor_generators[i].grid_anchors( + featmap_sizes[i], self.anchor_strides[i]) + multi_level_anchors += (Tensor(anchors.astype(np.float16)),) + + return multi_level_anchors diff --git a/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/fpn_neck.py b/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/fpn_neck.py new file mode 100644 index 0000000..73781bd --- /dev/null +++ b/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/fpn_neck.py @@ -0,0 +1,114 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""FasterRcnn feature pyramid network.""" + +import numpy as np +import mindspore.nn as nn +from mindspore import context +from mindspore.ops import operations as P +from mindspore.common.tensor import Tensor +from mindspore.common import dtype as mstype +from mindspore.common.initializer import initializer + +# pylint: disable=locally-disabled, missing-docstring + +context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") + +def bias_init_zeros(shape): + """Bias init method.""" + return Tensor(np.array(np.zeros(shape).astype(np.float32)).astype(np.float16)) + +def _conv(in_channels, out_channels, kernel_size=3, stride=1, padding=0, pad_mode='pad'): + """Conv2D wrapper.""" + shape = (out_channels, in_channels, kernel_size, kernel_size) + weights = initializer("XavierUniform", shape=shape, dtype=mstype.float16).to_tensor() + shape_bias = (out_channels,) + biass = bias_init_zeros(shape_bias) + return nn.Conv2d(in_channels, out_channels, + kernel_size=kernel_size, stride=stride, padding=padding, + pad_mode=pad_mode, weight_init=weights, has_bias=True, bias_init=biass) + +class FeatPyramidNeck(nn.Cell): + """ + Feature pyramid network cell, usually uses as network neck. + + Applies the convolution on multiple, input feature maps + and output feature map with same channel size. if required num of + output larger then num of inputs, add extra maxpooling for further + downsampling; + + Args: + in_channels (tuple) - Channel size of input feature maps. + out_channels (int) - Channel size output. + num_outs (int) - Num of output features. + + Returns: + Tuple, with tensors of same channel size. + + Examples: + neck = FeatPyramidNeck([100,200,300], 50, 4) + input_data = (normal(0,0.1,(1,c,1280//(4*2**i), 768//(4*2**i)), + dtype=np.float32) \ + for i, c in enumerate(config.fpn_in_channels)) + x = neck(input_data) + """ + + def __init__(self, + in_channels, + out_channels, + num_outs): + super(FeatPyramidNeck, self).__init__() + self.num_outs = num_outs + self.in_channels = in_channels + self.fpn_layer = len(self.in_channels) + + assert not self.num_outs < len(in_channels) + + self.lateral_convs_list_ = [] + self.fpn_convs_ = [] + + for _, channel in enumerate(in_channels): + l_conv = _conv(channel, out_channels, kernel_size=1, stride=1, padding=0, pad_mode='valid') + fpn_conv = _conv(out_channels, out_channels, kernel_size=3, stride=1, padding=0, pad_mode='same') + self.lateral_convs_list_.append(l_conv) + self.fpn_convs_.append(fpn_conv) + self.lateral_convs_list = nn.layer.CellList(self.lateral_convs_list_) + self.fpn_convs_list = nn.layer.CellList(self.fpn_convs_) + self.interpolate1 = P.ResizeNearestNeighbor((48, 80)) + self.interpolate2 = P.ResizeNearestNeighbor((96, 160)) + self.interpolate3 = P.ResizeNearestNeighbor((192, 320)) + self.maxpool = P.MaxPool(ksize=1, strides=2, padding="same") + + def construct(self, inputs): + x = () + for i in range(self.fpn_layer): + x += (self.lateral_convs_list[i](inputs[i]),) + + y = (x[3],) + y = y + (x[2] + self.interpolate1(y[self.fpn_layer - 4]),) + y = y + (x[1] + self.interpolate2(y[self.fpn_layer - 3]),) + y = y + (x[0] + self.interpolate3(y[self.fpn_layer - 2]),) + + z = () + for i in range(self.fpn_layer - 1, -1, -1): + z = z + (y[i],) + + outs = () + for i in range(self.fpn_layer): + outs = outs + (self.fpn_convs_list[i](z[i]),) + + for i in range(self.num_outs - self.fpn_layer): + outs = outs + (self.maxpool(outs[3]),) + return outs diff --git a/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/proposal_generator.py b/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/proposal_generator.py new file mode 100644 index 0000000..d24fd04 --- /dev/null +++ b/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/proposal_generator.py @@ -0,0 +1,201 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""FasterRcnn proposal generator.""" + +import numpy as np +import mindspore.nn as nn +import mindspore.common.dtype as mstype +from mindspore.ops import operations as P +from mindspore import Tensor +from mindspore import context + +# pylint: disable=locally-disabled, invalid-name, missing-docstring + + +context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") + + +class Proposal(nn.Cell): + """ + Proposal subnet. + + Args: + config (dict): Config. + batch_size (int): Batchsize. + num_classes (int) - Class number. + use_sigmoid_cls (bool) - Select sigmoid or softmax function. + target_means (tuple) - Means for encode function. Default: (.0, .0, .0, .0). + target_stds (tuple) - Stds for encode function. Default: (1.0, 1.0, 1.0, 1.0). + + Returns: + Tuple, tuple of output tensor,(proposal, mask). + + Examples: + Proposal(config = config, batch_size = 1, num_classes = 81, use_sigmoid_cls = True, \ + target_means=(.0, .0, .0, .0), target_stds=(1.0, 1.0, 1.0, 1.0)) + """ + def __init__(self, + config, + batch_size, + num_classes, + use_sigmoid_cls, + target_means=(.0, .0, .0, .0), + target_stds=(1.0, 1.0, 1.0, 1.0) + ): + super(Proposal, self).__init__() + cfg = config + self.batch_size = batch_size + self.num_classes = num_classes + self.target_means = target_means + self.target_stds = target_stds + self.use_sigmoid_cls = use_sigmoid_cls + + if self.use_sigmoid_cls: + self.cls_out_channels = num_classes - 1 + self.activation = P.Sigmoid() + self.reshape_shape = (-1, 1) + else: + self.cls_out_channels = num_classes + self.activation = P.Softmax(axis=1) + self.reshape_shape = (-1, 2) + + if self.cls_out_channels <= 0: + raise ValueError('num_classes={} is too small'.format(num_classes)) + + self.num_pre = cfg.rpn_proposal_nms_pre + self.min_box_size = cfg.rpn_proposal_min_bbox_size + self.nms_thr = cfg.rpn_proposal_nms_thr + self.nms_post = cfg.rpn_proposal_nms_post + self.nms_across_levels = cfg.rpn_proposal_nms_across_levels + self.max_num = cfg.rpn_proposal_max_num + self.num_levels = cfg.fpn_num_outs + + # Op Define + self.squeeze = P.Squeeze() + self.reshape = P.Reshape() + self.cast = P.Cast() + + self.feature_shapes = cfg.feature_shapes + + self.transpose_shape = (1, 2, 0) + + self.decode = P.BoundingBoxDecode(max_shape=(cfg.img_height, cfg.img_width), \ + means=self.target_means, \ + stds=self.target_stds) + + self.nms = P.NMSWithMask(self.nms_thr) + self.concat_axis0 = P.Concat(axis=0) + self.concat_axis1 = P.Concat(axis=1) + self.split = P.Split(axis=1, output_num=5) + self.min = P.Minimum() + self.gatherND = P.GatherNd() + self.slice = P.Slice() + self.select = P.Select() + self.greater = P.Greater() + self.transpose = P.Transpose() + self.tile = P.Tile() + self.set_train_local(config, training=True) + + self.multi_10 = Tensor(10.0, mstype.float16) + + def set_train_local(self, config, training=True): + """Set training flag.""" + self.training_local = training + + cfg = config + self.topK_stage1 = () + self.topK_shape = () + total_max_topk_input = 0 + if not self.training_local: + self.num_pre = cfg.rpn_nms_pre + self.min_box_size = cfg.rpn_min_bbox_min_size + self.nms_thr = cfg.rpn_nms_thr + self.nms_post = cfg.rpn_nms_post + self.nms_across_levels = cfg.rpn_nms_across_levels + self.max_num = cfg.rpn_max_num + + for shp in self.feature_shapes: + k_num = min(self.num_pre, (shp[0] * shp[1] * 3)) + total_max_topk_input += k_num + self.topK_stage1 += (k_num,) + self.topK_shape += ((k_num, 1),) + + self.topKv2 = P.TopK(sorted=True) + self.topK_shape_stage2 = (self.max_num, 1) + self.min_float_num = -65536.0 + self.topK_mask = Tensor(self.min_float_num * np.ones(total_max_topk_input, np.float16)) + + def construct(self, rpn_cls_score_total, rpn_bbox_pred_total, anchor_list): + proposals_tuple = () + masks_tuple = () + for img_id in range(self.batch_size): + cls_score_list = () + bbox_pred_list = () + for i in range(self.num_levels): + rpn_cls_score_i = self.squeeze(rpn_cls_score_total[i][img_id:img_id+1:1, ::, ::, ::]) + rpn_bbox_pred_i = self.squeeze(rpn_bbox_pred_total[i][img_id:img_id+1:1, ::, ::, ::]) + + cls_score_list = cls_score_list + (rpn_cls_score_i,) + bbox_pred_list = bbox_pred_list + (rpn_bbox_pred_i,) + + proposals, masks = self.get_bboxes_single(cls_score_list, bbox_pred_list, anchor_list) + proposals_tuple += (proposals,) + masks_tuple += (masks,) + return proposals_tuple, masks_tuple + + def get_bboxes_single(self, cls_scores, bbox_preds, mlvl_anchors): + """Get proposal boundingbox.""" + mlvl_proposals = () + mlvl_mask = () + for idx in range(self.num_levels): + rpn_cls_score = self.transpose(cls_scores[idx], self.transpose_shape) + rpn_bbox_pred = self.transpose(bbox_preds[idx], self.transpose_shape) + anchors = mlvl_anchors[idx] + + rpn_cls_score = self.reshape(rpn_cls_score, self.reshape_shape) + rpn_cls_score = self.activation(rpn_cls_score) + rpn_cls_score_process = self.cast(self.squeeze(rpn_cls_score[::, 0::]), mstype.float16) + + rpn_bbox_pred_process = self.cast(self.reshape(rpn_bbox_pred, (-1, 4)), mstype.float16) + + scores_sorted, topk_inds = self.topKv2(rpn_cls_score_process, self.topK_stage1[idx]) + + topk_inds = self.reshape(topk_inds, self.topK_shape[idx]) + + bboxes_sorted = self.gatherND(rpn_bbox_pred_process, topk_inds) + anchors_sorted = self.cast(self.gatherND(anchors, topk_inds), mstype.float16) + + proposals_decode = self.decode(anchors_sorted, bboxes_sorted) + + proposals_decode = self.concat_axis1((proposals_decode, self.reshape(scores_sorted, self.topK_shape[idx]))) + proposals, _, mask_valid = self.nms(proposals_decode) + + mlvl_proposals = mlvl_proposals + (proposals,) + mlvl_mask = mlvl_mask + (mask_valid,) + + proposals = self.concat_axis0(mlvl_proposals) + masks = self.concat_axis0(mlvl_mask) + + _, _, _, _, scores = self.split(proposals) + scores = self.squeeze(scores) + topk_mask = self.cast(self.topK_mask, mstype.float16) + scores_using = self.select(masks, scores, topk_mask) + + _, topk_inds = self.topKv2(scores_using, self.max_num) + + topk_inds = self.reshape(topk_inds, self.topK_shape_stage2) + proposals = self.gatherND(proposals, topk_inds) + masks = self.gatherND(masks, topk_inds) + return proposals, masks diff --git a/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/rcnn.py b/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/rcnn.py new file mode 100644 index 0000000..3ddca9d --- /dev/null +++ b/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/rcnn.py @@ -0,0 +1,173 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""FasterRcnn Rcnn network.""" + +import numpy as np +import mindspore.common.dtype as mstype +import mindspore.nn as nn +from mindspore.ops import operations as P +from mindspore.common.tensor import Tensor +from mindspore.common.initializer import initializer +from mindspore.common.parameter import Parameter + +# pylint: disable=locally-disabled, missing-docstring + + +class DenseNoTranpose(nn.Cell): + """Dense method""" + def __init__(self, input_channels, output_channels, weight_init): + super(DenseNoTranpose, self).__init__() + + self.weight = Parameter(initializer(weight_init, [input_channels, output_channels], mstype.float16), + name="weight") + self.bias = Parameter(initializer("zeros", [output_channels], mstype.float16).to_tensor(), name="bias") + + self.matmul = P.MatMul(transpose_b=False) + self.bias_add = P.BiasAdd() + + def construct(self, x): + output = self.bias_add(self.matmul(x, self.weight), self.bias) + return output + + +class Rcnn(nn.Cell): + """ + Rcnn subnet. + + Args: + config (dict) - Config. + representation_size (int) - Channels of shared dense. + batch_size (int) - Batchsize. + num_classes (int) - Class number. + target_means (list) - Means for encode function. Default: (.0, .0, .0, .0]). + target_stds (list) - Stds for encode function. Default: (0.1, 0.1, 0.2, 0.2). + + Returns: + Tuple, tuple of output tensor. + + Examples: + Rcnn(config=config, representation_size = 1024, batch_size=2, num_classes = 81, \ + target_means=(0., 0., 0., 0.), target_stds=(0.1, 0.1, 0.2, 0.2)) + """ + def __init__(self, + config, + representation_size, + batch_size, + num_classes, + target_means=(0., 0., 0., 0.), + target_stds=(0.1, 0.1, 0.2, 0.2) + ): + super(Rcnn, self).__init__() + cfg = config + self.rcnn_loss_cls_weight = Tensor(np.array(cfg.rcnn_loss_cls_weight).astype(np.float16)) + self.rcnn_loss_reg_weight = Tensor(np.array(cfg.rcnn_loss_reg_weight).astype(np.float16)) + self.rcnn_fc_out_channels = cfg.rcnn_fc_out_channels + self.target_means = target_means + self.target_stds = target_stds + self.num_classes = num_classes + self.in_channels = cfg.rcnn_in_channels + self.train_batch_size = batch_size + self.test_batch_size = cfg.test_batch_size + + shape_0 = (self.rcnn_fc_out_channels, representation_size) + weights_0 = initializer("XavierUniform", shape=shape_0[::-1], dtype=mstype.float16).to_tensor() + shape_1 = (self.rcnn_fc_out_channels, self.rcnn_fc_out_channels) + weights_1 = initializer("XavierUniform", shape=shape_1[::-1], dtype=mstype.float16).to_tensor() + self.shared_fc_0 = DenseNoTranpose(representation_size, self.rcnn_fc_out_channels, weights_0) + self.shared_fc_1 = DenseNoTranpose(self.rcnn_fc_out_channels, self.rcnn_fc_out_channels, weights_1) + + cls_weight = initializer('Normal', shape=[num_classes, self.rcnn_fc_out_channels][::-1], + dtype=mstype.float16).to_tensor() + reg_weight = initializer('Normal', shape=[num_classes * 4, self.rcnn_fc_out_channels][::-1], + dtype=mstype.float16).to_tensor() + self.cls_scores = DenseNoTranpose(self.rcnn_fc_out_channels, num_classes, cls_weight) + self.reg_scores = DenseNoTranpose(self.rcnn_fc_out_channels, num_classes * 4, reg_weight) + + self.flatten = P.Flatten() + self.relu = P.ReLU() + self.logicaland = P.LogicalAnd() + self.loss_cls = P.SoftmaxCrossEntropyWithLogits() + self.loss_bbox = P.SmoothL1Loss(beta=1.0) + self.reshape = P.Reshape() + self.onehot = P.OneHot() + self.greater = P.Greater() + self.cast = P.Cast() + self.sum_loss = P.ReduceSum() + self.tile = P.Tile() + self.expandims = P.ExpandDims() + + self.gather = P.GatherNd() + self.argmax = P.ArgMaxWithValue(axis=1) + + self.on_value = Tensor(1.0, mstype.float32) + self.off_value = Tensor(0.0, mstype.float32) + self.value = Tensor(1.0, mstype.float16) + + self.num_bboxes = (cfg.num_expected_pos_stage2 + cfg.num_expected_neg_stage2) * batch_size + + rmv_first = np.ones((self.num_bboxes, self.num_classes)) + rmv_first[:, 0] = np.zeros((self.num_bboxes,)) + self.rmv_first_tensor = Tensor(rmv_first.astype(np.float16)) + + self.num_bboxes_test = cfg.rpn_max_num * cfg.test_batch_size + + range_max = np.arange(self.num_bboxes_test).astype(np.int32) + self.range_max = Tensor(range_max) + + def construct(self, featuremap, bbox_targets, labels, mask): + x = self.flatten(featuremap) + + x = self.relu(self.shared_fc_0(x)) + x = self.relu(self.shared_fc_1(x)) + + x_cls = self.cls_scores(x) + x_reg = self.reg_scores(x) + + if self.training: + bbox_weights = self.cast(self.logicaland(self.greater(labels, 0), mask), mstype.int32) * labels + labels = self.cast(self.onehot(labels, self.num_classes, self.on_value, self.off_value), mstype.float16) + bbox_targets = self.tile(self.expandims(bbox_targets, 1), (1, self.num_classes, 1)) + + loss, loss_cls, loss_reg, loss_print = self.loss(x_cls, x_reg, bbox_targets, bbox_weights, labels, mask) + out = (loss, loss_cls, loss_reg, loss_print) + else: + out = (x_cls, (x_cls / self.value), x_reg, x_cls) + + return out + + def loss(self, cls_score, bbox_pred, bbox_targets, bbox_weights, labels, weights): + """Loss method.""" + loss_print = () + loss_cls, _ = self.loss_cls(cls_score, labels) + + weights = self.cast(weights, mstype.float16) + loss_cls = loss_cls * weights + loss_cls = self.sum_loss(loss_cls, (0,)) / self.sum_loss(weights, (0,)) + + bbox_weights = self.cast(self.onehot(bbox_weights, self.num_classes, self.on_value, self.off_value), + mstype.float16) + bbox_weights = bbox_weights * self.rmv_first_tensor + + pos_bbox_pred = self.reshape(bbox_pred, (self.num_bboxes, -1, 4)) + loss_reg = self.loss_bbox(pos_bbox_pred, bbox_targets) + loss_reg = self.sum_loss(loss_reg, (2,)) + loss_reg = loss_reg * bbox_weights + loss_reg = loss_reg / self.sum_loss(weights, (0,)) + loss_reg = self.sum_loss(loss_reg, (0, 1)) + + loss = self.rcnn_loss_cls_weight * loss_cls + self.rcnn_loss_reg_weight * loss_reg + loss_print += (loss_cls, loss_reg) + + return loss, loss_cls, loss_reg, loss_print diff --git a/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/resnet50.py b/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/resnet50.py new file mode 100644 index 0000000..eb0fd57 --- /dev/null +++ b/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/resnet50.py @@ -0,0 +1,250 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""Resnet50 backbone.""" + +import numpy as np +import mindspore.nn as nn +from mindspore.ops import operations as P +from mindspore.common.tensor import Tensor +from mindspore.ops import functional as F +from mindspore import context + +# pylint: disable=locally-disabled, invalid-name, missing-docstring + + +context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") + + +def weight_init_ones(shape): + """Weight init.""" + return Tensor(np.array(np.ones(shape).astype(np.float32) * 0.01).astype(np.float16)) + + +def _conv(in_channels, out_channels, kernel_size=3, stride=1, padding=0, pad_mode='pad'): + """Conv2D wrapper.""" + shape = (out_channels, in_channels, kernel_size, kernel_size) + weights = weight_init_ones(shape) + return nn.Conv2d(in_channels, out_channels, + kernel_size=kernel_size, stride=stride, padding=padding, + pad_mode=pad_mode, weight_init=weights, has_bias=False) + + +def _BatchNorm2dInit(out_chls, momentum=0.1, affine=True, use_batch_statistics=True): + """Batchnorm2D wrapper.""" + gamma_init = Tensor(np.array(np.ones(out_chls)).astype(np.float16)) + beta_init = Tensor(np.array(np.ones(out_chls) * 0).astype(np.float16)) + moving_mean_init = Tensor(np.array(np.ones(out_chls) * 0).astype(np.float16)) + moving_var_init = Tensor(np.array(np.ones(out_chls)).astype(np.float16)) + + return nn.BatchNorm2d(out_chls, momentum=momentum, affine=affine, gamma_init=gamma_init, + beta_init=beta_init, moving_mean_init=moving_mean_init, + moving_var_init=moving_var_init, use_batch_statistics=use_batch_statistics) + + +class ResNetFea(nn.Cell): + """ + ResNet architecture. + + Args: + block (Cell): Block for network. + layer_nums (list): Numbers of block in different layers. + in_channels (list): Input channel in each layer. + out_channels (list): Output channel in each layer. + weights_update (bool): Weight update flag. + Returns: + Tensor, output tensor. + + Examples: + >>> ResNet(ResidualBlock, + >>> [3, 4, 6, 3], + >>> [64, 256, 512, 1024], + >>> [256, 512, 1024, 2048], + >>> False) + """ + def __init__(self, + block, + layer_nums, + in_channels, + out_channels, + weights_update=False): + super(ResNetFea, self).__init__() + + if not len(layer_nums) == len(in_channels) == len(out_channels) == 4: + raise ValueError("the length of " + "layer_num, inchannel, outchannel list must be 4!") + + bn_training = False + self.conv1 = _conv(3, 64, kernel_size=7, stride=2, padding=3, pad_mode='pad') + self.bn1 = _BatchNorm2dInit(64, affine=bn_training, use_batch_statistics=bn_training) + self.relu = P.ReLU() + self.maxpool = P.MaxPool(ksize=3, strides=2, padding="SAME") + self.weights_update = weights_update + + if not self.weights_update: + self.conv1.weight.requires_grad = False + + self.layer1 = self._make_layer(block, + layer_nums[0], + in_channel=in_channels[0], + out_channel=out_channels[0], + stride=1, + training=bn_training, + weights_update=self.weights_update) + self.layer2 = self._make_layer(block, + layer_nums[1], + in_channel=in_channels[1], + out_channel=out_channels[1], + stride=2, + training=bn_training, + weights_update=True) + self.layer3 = self._make_layer(block, + layer_nums[2], + in_channel=in_channels[2], + out_channel=out_channels[2], + stride=2, + training=bn_training, + weights_update=True) + self.layer4 = self._make_layer(block, + layer_nums[3], + in_channel=in_channels[3], + out_channel=out_channels[3], + stride=2, + training=bn_training, + weights_update=True) + + def _make_layer(self, block, layer_num, in_channel, out_channel, stride, training=False, weights_update=False): + """Make block layer.""" + layers = [] + down_sample = False + if stride != 1 or in_channel != out_channel: + down_sample = True + resblk = block(in_channel, + out_channel, + stride=stride, + down_sample=down_sample, + training=training, + weights_update=weights_update) + layers.append(resblk) + + for _ in range(1, layer_num): + resblk = block(out_channel, out_channel, stride=1, training=training, weights_update=weights_update) + layers.append(resblk) + + return nn.SequentialCell(layers) + + def construct(self, x): + x = self.conv1(x) + x = self.bn1(x) + x = self.relu(x) + c1 = self.maxpool(x) + + c2 = self.layer1(c1) + identity = c2 + if not self.weights_update: + identity = F.stop_gradient(c2) + c3 = self.layer2(identity) + c4 = self.layer3(c3) + c5 = self.layer4(c4) + + return identity, c3, c4, c5 + + +class ResidualBlockUsing(nn.Cell): + """ + ResNet V1 residual block definition. + + Args: + in_channels (int) - Input channel. + out_channels (int) - Output channel. + stride (int) - Stride size for the initial convolutional layer. Default: 1. + down_sample (bool) - If to do the downsample in block. Default: False. + momentum (float) - Momentum for batchnorm layer. Default: 0.1. + training (bool) - Training flag. Default: False. + weights_updata (bool) - Weights update flag. Default: False. + + Returns: + Tensor, output tensor. + + Examples: + ResidualBlock(3,256,stride=2,down_sample=True) + """ + expansion = 4 + + def __init__(self, + in_channels, + out_channels, + stride=1, + down_sample=False, + momentum=0.1, + training=False, + weights_update=False): + super(ResidualBlockUsing, self).__init__() + + self.affine = weights_update + + out_chls = out_channels // self.expansion + self.conv1 = _conv(in_channels, out_chls, kernel_size=1, stride=1, padding=0) + self.bn1 = _BatchNorm2dInit(out_chls, momentum=momentum, affine=self.affine, use_batch_statistics=training) + + self.conv2 = _conv(out_chls, out_chls, kernel_size=3, stride=stride, padding=1) + self.bn2 = _BatchNorm2dInit(out_chls, momentum=momentum, affine=self.affine, use_batch_statistics=training) + + self.conv3 = _conv(out_chls, out_channels, kernel_size=1, stride=1, padding=0) + self.bn3 = _BatchNorm2dInit(out_channels, momentum=momentum, affine=self.affine, use_batch_statistics=training) + + if training: + self.bn1 = self.bn1.set_train() + self.bn2 = self.bn2.set_train() + self.bn3 = self.bn3.set_train() + + if not weights_update: + self.conv1.weight.requires_grad = False + self.conv2.weight.requires_grad = False + self.conv3.weight.requires_grad = False + + self.relu = P.ReLU() + self.downsample = down_sample + if self.downsample: + self.conv_down_sample = _conv(in_channels, out_channels, kernel_size=1, stride=stride, padding=0) + self.bn_down_sample = _BatchNorm2dInit(out_channels, momentum=momentum, affine=self.affine, + use_batch_statistics=training) + if training: + self.bn_down_sample = self.bn_down_sample.set_train() + if not weights_update: + self.conv_down_sample.weight.requires_grad = False + self.add = P.TensorAdd() + + def construct(self, x): + identity = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + out = self.relu(out) + + out = self.conv3(out) + out = self.bn3(out) + + if self.downsample: + identity = self.conv_down_sample(identity) + identity = self.bn_down_sample(identity) + + out = self.add(out, identity) + out = self.relu(out) + + return out diff --git a/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/roi_align.py b/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/roi_align.py new file mode 100644 index 0000000..f174381 --- /dev/null +++ b/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/roi_align.py @@ -0,0 +1,181 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""FasterRcnn ROIAlign module.""" + +import numpy as np +import mindspore.nn as nn +import mindspore.common.dtype as mstype +from mindspore.ops import operations as P +from mindspore.ops import composite as C +from mindspore.nn import layer as L +from mindspore.common.tensor import Tensor + +# pylint: disable=locally-disabled, invalid-name, missing-docstring + + +class ROIAlign(nn.Cell): + """ + Extract RoI features from mulitple feature map. + + Args: + out_size_h (int) - RoI height. + out_size_w (int) - RoI width. + spatial_scale (int) - RoI spatial scale. + sample_num (int) - RoI sample number. + """ + def __init__(self, + out_size_h, + out_size_w, + spatial_scale, + sample_num=0): + super(ROIAlign, self).__init__() + + self.out_size = (out_size_h, out_size_w) + self.spatial_scale = float(spatial_scale) + self.sample_num = int(sample_num) + self.align_op = P.ROIAlign(self.out_size[0], self.out_size[1], + self.spatial_scale, self.sample_num) + + def construct(self, features, rois): + return self.align_op(features, rois) + + def __repr__(self): + format_str = self.__class__.__name__ + format_str += '(out_size={}, spatial_scale={}, sample_num={}'.format( + self.out_size, self.spatial_scale, self.sample_num) + return format_str + + +class SingleRoIExtractor(nn.Cell): + """ + Extract RoI features from a single level feature map. + + If there are mulitple input feature levels, each RoI is mapped to a level + according to its scale. + + Args: + config (dict): Config + roi_layer (dict): Specify RoI layer type and arguments. + out_channels (int): Output channels of RoI layers. + featmap_strides (int): Strides of input feature maps. + batch_size (int): Batchsize. + finest_scale (int): Scale threshold of mapping to level 0. + """ + + def __init__(self, + config, + roi_layer, + out_channels, + featmap_strides, + batch_size=1, + finest_scale=56): + super(SingleRoIExtractor, self).__init__() + cfg = config + self.train_batch_size = batch_size + self.out_channels = out_channels + self.featmap_strides = featmap_strides + self.num_levels = len(self.featmap_strides) + self.out_size = roi_layer['out_size'] + self.sample_num = roi_layer['sample_num'] + self.roi_layers = self.build_roi_layers(self.featmap_strides) + self.roi_layers = L.CellList(self.roi_layers) + + self.sqrt = P.Sqrt() + self.log = P.Log() + self.finest_scale_ = finest_scale + self.clamp = C.clip_by_value + + self.cast = P.Cast() + self.equal = P.Equal() + self.select = P.Select() + + _mode_16 = False + self.dtype = np.float16 if _mode_16 else np.float32 + self.ms_dtype = mstype.float16 if _mode_16 else mstype.float32 + self.set_train_local(cfg, training=True) + + def set_train_local(self, config, training=True): + """Set training flag.""" + self.training_local = training + + cfg = config + # Init tensor + self.batch_size = cfg.roi_sample_num if self.training_local else cfg.rpn_max_num + self.batch_size = self.train_batch_size*self.batch_size \ + if self.training_local else cfg.test_batch_size*self.batch_size + self.ones = Tensor(np.array(np.ones((self.batch_size, 1)), dtype=self.dtype)) + finest_scale = np.array(np.ones((self.batch_size, 1)), dtype=self.dtype) * self.finest_scale_ + self.finest_scale = Tensor(finest_scale) + self.epslion = Tensor(np.array(np.ones((self.batch_size, 1)), dtype=self.dtype)*self.dtype(1e-6)) + self.zeros = Tensor(np.array(np.zeros((self.batch_size, 1)), dtype=np.int32)) + self.max_levels = Tensor(np.array(np.ones((self.batch_size, 1)), dtype=np.int32)*(self.num_levels-1)) + self.twos = Tensor(np.array(np.ones((self.batch_size, 1)), dtype=self.dtype) * 2) + self.res_ = Tensor(np.array(np.zeros((self.batch_size, self.out_channels, + self.out_size, self.out_size)), dtype=self.dtype)) + def num_inputs(self): + return len(self.featmap_strides) + + def init_weights(self): + pass + + def log2(self, value): + return self.log(value) / self.log(self.twos) + + def build_roi_layers(self, featmap_strides): + roi_layers = [] + for s in featmap_strides: + layer_cls = ROIAlign(self.out_size, self.out_size, + spatial_scale=1 / s, + sample_num=self.sample_num) + roi_layers.append(layer_cls) + return roi_layers + + def _c_map_roi_levels(self, rois): + """Map rois to corresponding feature levels by scales. + + - scale < finest_scale * 2: level 0 + - finest_scale * 2 <= scale < finest_scale * 4: level 1 + - finest_scale * 4 <= scale < finest_scale * 8: level 2 + - scale >= finest_scale * 8: level 3 + + Args: + rois (Tensor): Input RoIs, shape (k, 5). + num_levels (int): Total level number. + + Returns: + Tensor: Level index (0-based) of each RoI, shape (k, ) + """ + scale = self.sqrt(rois[::, 3:4:1] - rois[::, 1:2:1] + self.ones) * \ + self.sqrt(rois[::, 4:5:1] - rois[::, 2:3:1] + self.ones) + + target_lvls = self.log2(scale / self.finest_scale + self.epslion) + target_lvls = P.Floor()(target_lvls) + target_lvls = self.cast(target_lvls, mstype.int32) + target_lvls = self.clamp(target_lvls, self.zeros, self.max_levels) + + return target_lvls + + def construct(self, rois, feat1, feat2, feat3, feat4): + feats = (feat1, feat2, feat3, feat4) + res = self.res_ + target_lvls = self._c_map_roi_levels(rois) + for i in range(self.num_levels): + mask = self.equal(target_lvls, P.ScalarToArray()(i)) + mask = P.Reshape()(mask, (-1, 1, 1, 1)) + roi_feats_t = self.roi_layers[i](feats[i], rois) + mask = self.cast(P.Tile()(self.cast(mask, mstype.int32), (1, 256, 7, 7)), mstype.bool_) + res = self.select(mask, roi_feats_t, res) + + return res diff --git a/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/rpn.py b/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/rpn.py new file mode 100644 index 0000000..5d5b87e --- /dev/null +++ b/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/rpn.py @@ -0,0 +1,315 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""RPN for fasterRCNN""" +import numpy as np +import mindspore.nn as nn +import mindspore.common.dtype as mstype +from mindspore.ops import operations as P +from mindspore import Tensor +from mindspore.ops import functional as F +from mindspore.common.initializer import initializer +from .bbox_assign_sample import BboxAssignSample + +# pylint: disable=locally-disabled, invalid-name, missing-docstring + +# pylint: disable=locally-disabled, invalid-name, missing-docstring + + +class RpnRegClsBlock(nn.Cell): + """ + Rpn reg cls block for rpn layer + + Args: + in_channels (int) - Input channels of shared convolution. + feat_channels (int) - Output channels of shared convolution. + num_anchors (int) - The anchor number. + cls_out_channels (int) - Output channels of classification convolution. + weight_conv (Tensor) - weight init for rpn conv. + bias_conv (Tensor) - bias init for rpn conv. + weight_cls (Tensor) - weight init for rpn cls conv. + bias_cls (Tensor) - bias init for rpn cls conv. + weight_reg (Tensor) - weight init for rpn reg conv. + bias_reg (Tensor) - bias init for rpn reg conv. + + Returns: + Tensor, output tensor. + """ + def __init__(self, + in_channels, + feat_channels, + num_anchors, + cls_out_channels, + weight_conv, + bias_conv, + weight_cls, + bias_cls, + weight_reg, + bias_reg): + super(RpnRegClsBlock, self).__init__() + self.rpn_conv = nn.Conv2d(in_channels, feat_channels, kernel_size=3, stride=1, pad_mode='same', + has_bias=True, weight_init=weight_conv, bias_init=bias_conv) + self.relu = nn.ReLU() + + self.rpn_cls = nn.Conv2d(feat_channels, num_anchors * cls_out_channels, kernel_size=1, pad_mode='valid', + has_bias=True, weight_init=weight_cls, bias_init=bias_cls) + self.rpn_reg = nn.Conv2d(feat_channels, num_anchors * 4, kernel_size=1, pad_mode='valid', + has_bias=True, weight_init=weight_reg, bias_init=bias_reg) + + def construct(self, x): + x = self.relu(self.rpn_conv(x)) + + x1 = self.rpn_cls(x) + x2 = self.rpn_reg(x) + + return x1, x2 + + +class RPN(nn.Cell): + """ + ROI proposal network.. + + Args: + config (dict) - Config. + batch_size (int) - Batchsize. + in_channels (int) - Input channels of shared convolution. + feat_channels (int) - Output channels of shared convolution. + num_anchors (int) - The anchor number. + cls_out_channels (int) - Output channels of classification convolution. + + Returns: + Tuple, tuple of output tensor. + + Examples: + RPN(config=config, batch_size=2, in_channels=256, feat_channels=1024, + num_anchors=3, cls_out_channels=512) + """ + def __init__(self, + config, + batch_size, + in_channels, + feat_channels, + num_anchors, + cls_out_channels): + super(RPN, self).__init__() + cfg_rpn = config + self.num_bboxes = cfg_rpn.num_bboxes + self.slice_index = () + self.feature_anchor_shape = () + self.slice_index += (0,) + index = 0 + for shape in cfg_rpn.feature_shapes: + self.slice_index += (self.slice_index[index] + shape[0] * shape[1] * num_anchors,) + self.feature_anchor_shape += (shape[0] * shape[1] * num_anchors * batch_size,) + index += 1 + + self.num_anchors = num_anchors + self.batch_size = batch_size + self.test_batch_size = cfg_rpn.test_batch_size + self.num_layers = 5 + self.real_ratio = Tensor(np.ones((1, 1)).astype(np.float16)) + + self.rpn_convs_list = nn.layer.CellList(self._make_rpn_layer(self.num_layers, in_channels, feat_channels, + num_anchors, cls_out_channels)) + + self.transpose = P.Transpose() + self.reshape = P.Reshape() + self.concat = P.Concat(axis=0) + self.fill = P.Fill() + self.placeh1 = Tensor(np.ones((1,)).astype(np.float16)) + + self.trans_shape = (0, 2, 3, 1) + + self.reshape_shape_reg = (-1, 4) + self.reshape_shape_cls = (-1,) + self.rpn_loss_reg_weight = Tensor(np.array(cfg_rpn.rpn_loss_reg_weight).astype(np.float16)) + self.rpn_loss_cls_weight = Tensor(np.array(cfg_rpn.rpn_loss_cls_weight).astype(np.float16)) + self.num_expected_total = Tensor(np.array(cfg_rpn.num_expected_neg * self.batch_size).astype(np.float16)) + self.num_bboxes = cfg_rpn.num_bboxes + self.get_targets = BboxAssignSample(cfg_rpn, self.batch_size, self.num_bboxes, False) + self.CheckValid = P.CheckValid() + self.sum_loss = P.ReduceSum() + self.loss_cls = P.SigmoidCrossEntropyWithLogits() + self.loss_bbox = P.SmoothL1Loss(beta=1.0/9.0) + self.squeeze = P.Squeeze() + self.cast = P.Cast() + self.tile = P.Tile() + self.zeros_like = P.ZerosLike() + self.loss = Tensor(np.zeros((1,)).astype(np.float16)) + self.clsloss = Tensor(np.zeros((1,)).astype(np.float16)) + self.regloss = Tensor(np.zeros((1,)).astype(np.float16)) + + def _make_rpn_layer(self, num_layers, in_channels, feat_channels, num_anchors, cls_out_channels): + """ + make rpn layer for rpn proposal network + + Args: + num_layers (int) - layer num. + in_channels (int) - Input channels of shared convolution. + feat_channels (int) - Output channels of shared convolution. + num_anchors (int) - The anchor number. + cls_out_channels (int) - Output channels of classification convolution. + + Returns: + List, list of RpnRegClsBlock cells. + """ + rpn_layer = [] + + shp_weight_conv = (feat_channels, in_channels, 3, 3) + shp_bias_conv = (feat_channels,) + weight_conv = initializer('Normal', shape=shp_weight_conv, dtype=mstype.float16).to_tensor() + bias_conv = initializer(0, shape=shp_bias_conv, dtype=mstype.float16).to_tensor() + + shp_weight_cls = (num_anchors * cls_out_channels, feat_channels, 1, 1) + shp_bias_cls = (num_anchors * cls_out_channels,) + weight_cls = initializer('Normal', shape=shp_weight_cls, dtype=mstype.float16).to_tensor() + bias_cls = initializer(0, shape=shp_bias_cls, dtype=mstype.float16).to_tensor() + + shp_weight_reg = (num_anchors * 4, feat_channels, 1, 1) + shp_bias_reg = (num_anchors * 4,) + weight_reg = initializer('Normal', shape=shp_weight_reg, dtype=mstype.float16).to_tensor() + bias_reg = initializer(0, shape=shp_bias_reg, dtype=mstype.float16).to_tensor() + + for i in range(num_layers): + rpn_layer.append(RpnRegClsBlock(in_channels, feat_channels, num_anchors, cls_out_channels, \ + weight_conv, bias_conv, weight_cls, \ + bias_cls, weight_reg, bias_reg)) + + for i in range(1, num_layers): + rpn_layer[i].rpn_conv.weight = rpn_layer[0].rpn_conv.weight + rpn_layer[i].rpn_cls.weight = rpn_layer[0].rpn_cls.weight + rpn_layer[i].rpn_reg.weight = rpn_layer[0].rpn_reg.weight + + rpn_layer[i].rpn_conv.bias = rpn_layer[0].rpn_conv.bias + rpn_layer[i].rpn_cls.bias = rpn_layer[0].rpn_cls.bias + rpn_layer[i].rpn_reg.bias = rpn_layer[0].rpn_reg.bias + + return rpn_layer + + def construct(self, inputs, img_metas, anchor_list, gt_bboxes, gt_labels, gt_valids): + loss_print = () + rpn_cls_score = () + rpn_bbox_pred = () + rpn_cls_score_total = () + rpn_bbox_pred_total = () + + for i in range(self.num_layers): + x1, x2 = self.rpn_convs_list[i](inputs[i]) + + rpn_cls_score_total = rpn_cls_score_total + (x1,) + rpn_bbox_pred_total = rpn_bbox_pred_total + (x2,) + + x1 = self.transpose(x1, self.trans_shape) + x1 = self.reshape(x1, self.reshape_shape_cls) + + x2 = self.transpose(x2, self.trans_shape) + x2 = self.reshape(x2, self.reshape_shape_reg) + + rpn_cls_score = rpn_cls_score + (x1,) + rpn_bbox_pred = rpn_bbox_pred + (x2,) + + loss = self.loss + clsloss = self.clsloss + regloss = self.regloss + bbox_targets = () + bbox_weights = () + labels = () + label_weights = () + + output = () + if self.training: + for i in range(self.batch_size): + multi_level_flags = () + anchor_list_tuple = () + + for j in range(self.num_layers): + res = self.cast(self.CheckValid(anchor_list[j], self.squeeze(img_metas[i:i + 1:1, ::])), + mstype.int32) + multi_level_flags = multi_level_flags + (res,) + anchor_list_tuple = anchor_list_tuple + (anchor_list[j],) + + valid_flag_list = self.concat(multi_level_flags) + anchor_using_list = self.concat(anchor_list_tuple) + + gt_bboxes_i = self.squeeze(gt_bboxes[i:i + 1:1, ::]) + gt_labels_i = self.squeeze(gt_labels[i:i + 1:1, ::]) + gt_valids_i = self.squeeze(gt_valids[i:i + 1:1, ::]) + + bbox_target, bbox_weight, label, label_weight = self.get_targets(gt_bboxes_i, + gt_labels_i, + self.cast(valid_flag_list, + mstype.bool_), + anchor_using_list, gt_valids_i) + + bbox_weight = self.cast(bbox_weight, mstype.float16) + label = self.cast(label, mstype.float16) + label_weight = self.cast(label_weight, mstype.float16) + + for j in range(self.num_layers): + begin = self.slice_index[j] + end = self.slice_index[j + 1] + stride = 1 + bbox_targets += (bbox_target[begin:end:stride, ::],) + bbox_weights += (bbox_weight[begin:end:stride],) + labels += (label[begin:end:stride],) + label_weights += (label_weight[begin:end:stride],) + + for i in range(self.num_layers): + bbox_target_using = () + bbox_weight_using = () + label_using = () + label_weight_using = () + + for j in range(self.batch_size): + bbox_target_using += (bbox_targets[i + (self.num_layers * j)],) + bbox_weight_using += (bbox_weights[i + (self.num_layers * j)],) + label_using += (labels[i + (self.num_layers * j)],) + label_weight_using += (label_weights[i + (self.num_layers * j)],) + + bbox_target_with_batchsize = self.concat(bbox_target_using) + bbox_weight_with_batchsize = self.concat(bbox_weight_using) + label_with_batchsize = self.concat(label_using) + label_weight_with_batchsize = self.concat(label_weight_using) + + # stop + bbox_target_ = F.stop_gradient(bbox_target_with_batchsize) + bbox_weight_ = F.stop_gradient(bbox_weight_with_batchsize) + label_ = F.stop_gradient(label_with_batchsize) + label_weight_ = F.stop_gradient(label_weight_with_batchsize) + + cls_score_i = rpn_cls_score[i] + reg_score_i = rpn_bbox_pred[i] + + loss_cls = self.loss_cls(cls_score_i, label_) + loss_cls_item = loss_cls * label_weight_ + loss_cls_item = self.sum_loss(loss_cls_item, (0,)) / self.num_expected_total + + loss_reg = self.loss_bbox(reg_score_i, bbox_target_) + bbox_weight_ = self.tile(self.reshape(bbox_weight_, (self.feature_anchor_shape[i], 1)), (1, 4)) + loss_reg = loss_reg * bbox_weight_ + loss_reg_item = self.sum_loss(loss_reg, (1,)) + loss_reg_item = self.sum_loss(loss_reg_item, (0,)) / self.num_expected_total + + loss_total = self.rpn_loss_cls_weight * loss_cls_item + self.rpn_loss_reg_weight * loss_reg_item + + loss += loss_total + loss_print += (loss_total, loss_cls_item, loss_reg_item) + clsloss += loss_cls_item + regloss += loss_reg_item + + output = (loss, rpn_cls_score_total, rpn_bbox_pred_total, clsloss, regloss, loss_print) + else: + output = (self.placeh1, rpn_cls_score_total, rpn_bbox_pred_total, self.placeh1, self.placeh1, self.placeh1) + + return output diff --git a/examples/model_security/model_attacks/cv/faster_rcnn/src/config.py b/examples/model_security/model_attacks/cv/faster_rcnn/src/config.py new file mode 100644 index 0000000..2aed5e9 --- /dev/null +++ b/examples/model_security/model_attacks/cv/faster_rcnn/src/config.py @@ -0,0 +1,158 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# =========================================================================== +""" +network config setting, will be used in train.py and eval.py +""" +from easydict import EasyDict as ed + +config = ed({ + "img_width": 1280, + "img_height": 768, + "keep_ratio": False, + "flip_ratio": 0.5, + "photo_ratio": 0.5, + "expand_ratio": 1.0, + + # anchor + "feature_shapes": [(192, 320), (96, 160), (48, 80), (24, 40), (12, 20)], + "anchor_scales": [8], + "anchor_ratios": [0.5, 1.0, 2.0], + "anchor_strides": [4, 8, 16, 32, 64], + "num_anchors": 3, + + # resnet + "resnet_block": [3, 4, 6, 3], + "resnet_in_channels": [64, 256, 512, 1024], + "resnet_out_channels": [256, 512, 1024, 2048], + + # fpn + "fpn_in_channels": [256, 512, 1024, 2048], + "fpn_out_channels": 256, + "fpn_num_outs": 5, + + # rpn + "rpn_in_channels": 256, + "rpn_feat_channels": 256, + "rpn_loss_cls_weight": 1.0, + "rpn_loss_reg_weight": 1.0, + "rpn_cls_out_channels": 1, + "rpn_target_means": [0., 0., 0., 0.], + "rpn_target_stds": [1.0, 1.0, 1.0, 1.0], + + # bbox_assign_sampler + "neg_iou_thr": 0.3, + "pos_iou_thr": 0.7, + "min_pos_iou": 0.3, + "num_bboxes": 245520, + "num_gts": 128, + "num_expected_neg": 256, + "num_expected_pos": 128, + + # proposal + "activate_num_classes": 2, + "use_sigmoid_cls": True, + + # roi_align + "roi_layer": dict(type='RoIAlign', out_size=7, sample_num=2), + "roi_align_out_channels": 256, + "roi_align_featmap_strides": [4, 8, 16, 32], + "roi_align_finest_scale": 56, + "roi_sample_num": 640, + + # bbox_assign_sampler_stage2 + "neg_iou_thr_stage2": 0.5, + "pos_iou_thr_stage2": 0.5, + "min_pos_iou_stage2": 0.5, + "num_bboxes_stage2": 2000, + "num_expected_pos_stage2": 128, + "num_expected_neg_stage2": 512, + "num_expected_total_stage2": 512, + + # rcnn + "rcnn_num_layers": 2, + "rcnn_in_channels": 256, + "rcnn_fc_out_channels": 1024, + "rcnn_loss_cls_weight": 1, + "rcnn_loss_reg_weight": 1, + "rcnn_target_means": [0., 0., 0., 0.], + "rcnn_target_stds": [0.1, 0.1, 0.2, 0.2], + + # train proposal + "rpn_proposal_nms_across_levels": False, + "rpn_proposal_nms_pre": 2000, + "rpn_proposal_nms_post": 2000, + "rpn_proposal_max_num": 2000, + "rpn_proposal_nms_thr": 0.7, + "rpn_proposal_min_bbox_size": 0, + + # test proposal + "rpn_nms_across_levels": False, + "rpn_nms_pre": 1000, + "rpn_nms_post": 1000, + "rpn_max_num": 1000, + "rpn_nms_thr": 0.7, + "rpn_min_bbox_min_size": 0, + "test_score_thr": 0.05, + "test_iou_thr": 0.5, + "test_max_per_img": 100, + "test_batch_size": 1, + + "rpn_head_loss_type": "CrossEntropyLoss", + "rpn_head_use_sigmoid": True, + "rpn_head_weight": 1.0, + + # LR + "base_lr": 0.02, + "base_step": 58633, + "total_epoch": 13, + "warmup_step": 500, + "warmup_mode": "linear", + "warmup_ratio": 1/3.0, + "sgd_step": [8, 11], + "sgd_momentum": 0.9, + + # train + "batch_size": 1, + "loss_scale": 1, + "momentum": 0.91, + "weight_decay": 1e-4, + "epoch_size": 12, + "save_checkpoint": True, + "save_checkpoint_epochs": 1, + "keep_checkpoint_max": 10, + "save_checkpoint_path": "./", + + "mindrecord_dir": "../MindRecord_COCO_TRAIN", + "coco_root": "./cocodataset/", + "train_data_type": "train2017", + "val_data_type": "val2017", + "instance_set": "annotations/instances_{}.json", + "coco_classes": ('background', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', + 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', + 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', + 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', + 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', + 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', + 'kite', 'baseball bat', 'baseball glove', 'skateboard', + 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', + 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', + 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', + 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', + 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', + 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', + 'refrigerator', 'book', 'clock', 'vase', 'scissors', + 'teddy bear', 'hair drier', 'toothbrush'), + "num_classes": 81 +}) diff --git a/examples/model_security/model_attacks/cv/faster_rcnn/src/dataset.py b/examples/model_security/model_attacks/cv/faster_rcnn/src/dataset.py new file mode 100644 index 0000000..addcc99 --- /dev/null +++ b/examples/model_security/model_attacks/cv/faster_rcnn/src/dataset.py @@ -0,0 +1,505 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +"""FasterRcnn dataset""" +from __future__ import division + +import os +import numpy as np +from numpy import random + +import mmcv +import mindspore.dataset as de +import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.transforms.c_transforms as CC +import mindspore.common.dtype as mstype +from mindspore.mindrecord import FileWriter +from src.config import config + +# pylint: disable=locally-disabled, unused-variable + + +def bbox_overlaps(bboxes1, bboxes2, mode='iou'): + """Calculate the ious between each bbox of bboxes1 and bboxes2. + + Args: + bboxes1(ndarray): shape (n, 4) + bboxes2(ndarray): shape (k, 4) + mode(str): iou (intersection over union) or iof (intersection + over foreground) + + Returns: + ious(ndarray): shape (n, k) + """ + + assert mode in ['iou', 'iof'] + + bboxes1 = bboxes1.astype(np.float32) + bboxes2 = bboxes2.astype(np.float32) + rows = bboxes1.shape[0] + cols = bboxes2.shape[0] + ious = np.zeros((rows, cols), dtype=np.float32) + if rows * cols == 0: + return ious + exchange = False + if bboxes1.shape[0] > bboxes2.shape[0]: + bboxes1, bboxes2 = bboxes2, bboxes1 + ious = np.zeros((cols, rows), dtype=np.float32) + exchange = True + area1 = (bboxes1[:, 2] - bboxes1[:, 0] + 1) * (bboxes1[:, 3] - bboxes1[:, 1] + 1) + area2 = (bboxes2[:, 2] - bboxes2[:, 0] + 1) * (bboxes2[:, 3] - bboxes2[:, 1] + 1) + for i in range(bboxes1.shape[0]): + x_start = np.maximum(bboxes1[i, 0], bboxes2[:, 0]) + y_start = np.maximum(bboxes1[i, 1], bboxes2[:, 1]) + x_end = np.minimum(bboxes1[i, 2], bboxes2[:, 2]) + y_end = np.minimum(bboxes1[i, 3], bboxes2[:, 3]) + overlap = np.maximum(x_end - x_start + 1, 0) * np.maximum( + y_end - y_start + 1, 0) + if mode == 'iou': + union = area1[i] + area2 - overlap + else: + union = area1[i] if not exchange else area2 + ious[i, :] = overlap / union + if exchange: + ious = ious.T + return ious + + +class PhotoMetricDistortion: + """Photo Metric Distortion""" + + def __init__(self, + brightness_delta=32, + contrast_range=(0.5, 1.5), + saturation_range=(0.5, 1.5), + hue_delta=18): + self.brightness_delta = brightness_delta + self.contrast_lower, self.contrast_upper = contrast_range + self.saturation_lower, self.saturation_upper = saturation_range + self.hue_delta = hue_delta + + def __call__(self, img, boxes, labels): + # random brightness + img = img.astype('float32') + + if random.randint(2): + delta = random.uniform(-self.brightness_delta, + self.brightness_delta) + img += delta + + # mode == 0 --> do random contrast first + # mode == 1 --> do random contrast last + mode = random.randint(2) + if mode == 1: + if random.randint(2): + alpha = random.uniform(self.contrast_lower, + self.contrast_upper) + img *= alpha + + # convert color from BGR to HSV + img = mmcv.bgr2hsv(img) + + # random saturation + if random.randint(2): + img[..., 1] *= random.uniform(self.saturation_lower, + self.saturation_upper) + + # random hue + if random.randint(2): + img[..., 0] += random.uniform(-self.hue_delta, self.hue_delta) + img[..., 0][img[..., 0] > 360] -= 360 + img[..., 0][img[..., 0] < 0] += 360 + + # convert color from HSV to BGR + img = mmcv.hsv2bgr(img) + + # random contrast + if mode == 0: + if random.randint(2): + alpha = random.uniform(self.contrast_lower, + self.contrast_upper) + img *= alpha + + # randomly swap channels + if random.randint(2): + img = img[..., random.permutation(3)] + + return img, boxes, labels + + +class Expand: + """expand image""" + + def __init__(self, mean=(0, 0, 0), to_rgb=True, ratio_range=(1, 4)): + if to_rgb: + self.mean = mean[::-1] + else: + self.mean = mean + self.min_ratio, self.max_ratio = ratio_range + + def __call__(self, img, boxes, labels): + if random.randint(2): + return img, boxes, labels + + h, w, c = img.shape + ratio = random.uniform(self.min_ratio, self.max_ratio) + expand_img = np.full((int(h * ratio), int(w * ratio), c), + self.mean).astype(img.dtype) + left = int(random.uniform(0, w * ratio - w)) + top = int(random.uniform(0, h * ratio - h)) + expand_img[top:top + h, left:left + w] = img + img = expand_img + boxes += np.tile((left, top), 2) + return img, boxes, labels + + +def rescale_column(img, img_shape, gt_bboxes, gt_label, gt_num): + """rescale operation for image""" + img_data, scale_factor = mmcv.imrescale(img, (config.img_width, config.img_height), return_scale=True) + if img_data.shape[0] > config.img_height: + img_data, scale_factor2 = mmcv.imrescale(img_data, (config.img_height, config.img_width), return_scale=True) + scale_factor = scale_factor * scale_factor2 + img_shape = np.append(img_shape, scale_factor) + img_shape = np.asarray(img_shape, dtype=np.float32) + gt_bboxes = gt_bboxes * scale_factor + + gt_bboxes[:, 0::2] = np.clip(gt_bboxes[:, 0::2], 0, img_shape[1] - 1) + gt_bboxes[:, 1::2] = np.clip(gt_bboxes[:, 1::2], 0, img_shape[0] - 1) + + return (img_data, img_shape, gt_bboxes, gt_label, gt_num) + + +def resize_column(img, img_shape, gt_bboxes, gt_label, gt_num): + """resize operation for image""" + img_data = img + img_data, w_scale, h_scale = mmcv.imresize( + img_data, (config.img_width, config.img_height), return_scale=True) + scale_factor = np.array( + [w_scale, h_scale, w_scale, h_scale], dtype=np.float32) + img_shape = (config.img_height, config.img_width, 1.0) + img_shape = np.asarray(img_shape, dtype=np.float32) + + gt_bboxes = gt_bboxes * scale_factor + + gt_bboxes[:, 0::2] = np.clip(gt_bboxes[:, 0::2], 0, img_shape[1] - 1) + gt_bboxes[:, 1::2] = np.clip(gt_bboxes[:, 1::2], 0, img_shape[0] - 1) + + return (img_data, img_shape, gt_bboxes, gt_label, gt_num) + + +def resize_column_test(img, img_shape, gt_bboxes, gt_label, gt_num): + """resize operation for image of eval""" + img_data = img + img_data, w_scale, h_scale = mmcv.imresize( + img_data, (config.img_width, config.img_height), return_scale=True) + scale_factor = np.array( + [w_scale, h_scale, w_scale, h_scale], dtype=np.float32) + img_shape = np.append(img_shape, (h_scale, w_scale)) + img_shape = np.asarray(img_shape, dtype=np.float32) + + gt_bboxes = gt_bboxes * scale_factor + + gt_bboxes[:, 0::2] = np.clip(gt_bboxes[:, 0::2], 0, img_shape[1] - 1) + gt_bboxes[:, 1::2] = np.clip(gt_bboxes[:, 1::2], 0, img_shape[0] - 1) + + return (img_data, img_shape, gt_bboxes, gt_label, gt_num) + + +def impad_to_multiple_column(img, img_shape, gt_bboxes, gt_label, gt_num): + """impad operation for image""" + img_data = mmcv.impad(img, (config.img_height, config.img_width)) + img_data = img_data.astype(np.float32) + return (img_data, img_shape, gt_bboxes, gt_label, gt_num) + + +def imnormalize_column(img, img_shape, gt_bboxes, gt_label, gt_num): + """imnormalize operation for image""" + img_data = mmcv.imnormalize(img, [123.675, 116.28, 103.53], [58.395, 57.12, 57.375], True) + img_data = img_data.astype(np.float32) + return (img_data, img_shape, gt_bboxes, gt_label, gt_num) + + +def flip_column(img, img_shape, gt_bboxes, gt_label, gt_num): + """flip operation for image""" + img_data = img + img_data = mmcv.imflip(img_data) + flipped = gt_bboxes.copy() + _, w, _ = img_data.shape + + flipped[..., 0::4] = w - gt_bboxes[..., 2::4] - 1 + flipped[..., 2::4] = w - gt_bboxes[..., 0::4] - 1 + + return (img_data, img_shape, flipped, gt_label, gt_num) + + +def flipped_generation(img, img_shape, gt_bboxes, gt_label, gt_num): + """flipped generation""" + img_data = img + flipped = gt_bboxes.copy() + _, w, _ = img_data.shape + + flipped[..., 0::4] = w - gt_bboxes[..., 2::4] - 1 + flipped[..., 2::4] = w - gt_bboxes[..., 0::4] - 1 + + return (img_data, img_shape, flipped, gt_label, gt_num) + + +def image_bgr_rgb(img, img_shape, gt_bboxes, gt_label, gt_num): + img_data = img[:, :, ::-1] + return (img_data, img_shape, gt_bboxes, gt_label, gt_num) + + +def transpose_column(img, img_shape, gt_bboxes, gt_label, gt_num): + """transpose operation for image""" + img_data = img.transpose(2, 0, 1).copy() + img_data = img_data.astype(np.float16) + img_shape = img_shape.astype(np.float16) + gt_bboxes = gt_bboxes.astype(np.float16) + gt_label = gt_label.astype(np.int32) + gt_num = gt_num.astype(np.bool) + + return (img_data, img_shape, gt_bboxes, gt_label, gt_num) + + +def photo_crop_column(img, img_shape, gt_bboxes, gt_label, gt_num): + """photo crop operation for image""" + random_photo = PhotoMetricDistortion() + img_data, gt_bboxes, gt_label = random_photo(img, gt_bboxes, gt_label) + + return (img_data, img_shape, gt_bboxes, gt_label, gt_num) + + +def expand_column(img, img_shape, gt_bboxes, gt_label, gt_num): + """expand operation for image""" + expand = Expand() + img, gt_bboxes, gt_label = expand(img, gt_bboxes, gt_label) + + return (img, img_shape, gt_bboxes, gt_label, gt_num) + + +def preprocess_fn(image, box, is_training): + """Preprocess function for dataset.""" + + def _infer_data(image_bgr, image_shape, gt_box_new, gt_label_new, gt_iscrowd_new_revert): + image_shape = image_shape[:2] + input_data = image_bgr, image_shape, gt_box_new, gt_label_new, gt_iscrowd_new_revert + + if config.keep_ratio: + input_data = rescale_column(*input_data) + else: + input_data = resize_column_test(*input_data) + + input_data = image_bgr_rgb(*input_data) + + output_data = input_data + return output_data + + def _data_aug(image, box, is_training): + """Data augmentation function.""" + image_bgr = image.copy() + image_bgr[:, :, 0] = image[:, :, 2] + image_bgr[:, :, 1] = image[:, :, 1] + image_bgr[:, :, 2] = image[:, :, 0] + image_shape = image_bgr.shape[:2] + gt_box = box[:, :4] + gt_label = box[:, 4] + gt_iscrowd = box[:, 5] + + pad_max_number = 128 + gt_box_new = np.pad(gt_box, ((0, pad_max_number - box.shape[0]), (0, 0)), mode="constant", constant_values=0) + gt_label_new = np.pad(gt_label, ((0, pad_max_number - box.shape[0])), mode="constant", constant_values=-1) + gt_iscrowd_new = np.pad(gt_iscrowd, ((0, pad_max_number - box.shape[0])), mode="constant", constant_values=1) + gt_iscrowd_new_revert = (~(gt_iscrowd_new.astype(np.bool))).astype(np.int32) + + if not is_training: + return _infer_data(image_bgr, image_shape, gt_box_new, gt_label_new, gt_iscrowd_new_revert) + + input_data = image_bgr, image_shape, gt_box_new, gt_label_new, gt_iscrowd_new_revert + + if config.keep_ratio: + input_data = rescale_column(*input_data) + else: + input_data = resize_column(*input_data) + + input_data = image_bgr_rgb(*input_data) + + output_data = input_data + return output_data + + return _data_aug(image, box, is_training) + + +def create_coco_label(is_training): + """Get image path and annotation from COCO.""" + from pycocotools.coco import COCO + + coco_root = config.coco_root + data_type = config.val_data_type + if is_training: + data_type = config.train_data_type + + # Classes need to train or test. + train_cls = config.coco_classes + train_cls_dict = {} + for i, cls in enumerate(train_cls): + train_cls_dict[cls] = i + + anno_json = os.path.join(coco_root, config.instance_set.format(data_type)) + + coco = COCO(anno_json) + classs_dict = {} + cat_ids = coco.loadCats(coco.getCatIds()) + for cat in cat_ids: + classs_dict[cat["id"]] = cat["name"] + + image_ids = coco.getImgIds() + image_files = [] + image_anno_dict = {} + + for img_id in image_ids: + image_info = coco.loadImgs(img_id) + file_name = image_info[0]["file_name"] + anno_ids = coco.getAnnIds(imgIds=img_id, iscrowd=None) + anno = coco.loadAnns(anno_ids) + image_path = os.path.join(coco_root, data_type, file_name) + annos = [] + for label in anno: + bbox = label["bbox"] + class_name = classs_dict[label["category_id"]] + if class_name in train_cls: + x1, x2 = bbox[0], bbox[0] + bbox[2] + y1, y2 = bbox[1], bbox[1] + bbox[3] + annos.append([x1, y1, x2, y2] + [train_cls_dict[class_name]] + [int(label["iscrowd"])]) + + image_files.append(image_path) + if annos: + image_anno_dict[image_path] = np.array(annos) + else: + image_anno_dict[image_path] = np.array([0, 0, 0, 0, 0, 1]) + + return image_files, image_anno_dict + + +def anno_parser(annos_str): + """Parse annotation from string to list.""" + annos = [] + for anno_str in annos_str: + anno = list(map(int, anno_str.strip().split(','))) + annos.append(anno) + return annos + + +def filter_valid_data(image_dir, anno_path): + """Filter valid image file, which both in image_dir and anno_path.""" + image_files = [] + image_anno_dict = {} + if not os.path.isdir(image_dir): + raise RuntimeError("Path given is not valid.") + if not os.path.isfile(anno_path): + raise RuntimeError("Annotation file is not valid.") + + with open(anno_path, "rb") as f: + lines = f.readlines() + for line in lines: + line_str = line.decode("utf-8").strip() + line_split = str(line_str).split(' ') + file_name = line_split[0] + image_path = os.path.join(image_dir, file_name) + if os.path.isfile(image_path): + image_anno_dict[image_path] = anno_parser(line_split[1:]) + image_files.append(image_path) + return image_files, image_anno_dict + + +def data_to_mindrecord_byte_image(dataset="coco", is_training=True, prefix="fasterrcnn.mindrecord", file_num=8): + """Create MindRecord file.""" + mindrecord_dir = config.mindrecord_dir + mindrecord_path = os.path.join(mindrecord_dir, prefix) + writer = FileWriter(mindrecord_path, file_num) + if dataset == "coco": + image_files, image_anno_dict = create_coco_label(is_training) + else: + image_files, image_anno_dict = filter_valid_data(config.IMAGE_DIR, config.ANNO_PATH) + + fasterrcnn_json = { + "image": {"type": "bytes"}, + "annotation": {"type": "int32", "shape": [-1, 6]}, + } + writer.add_schema(fasterrcnn_json, "fasterrcnn_json") + + for image_name in image_files: + with open(image_name, 'rb') as f: + img = f.read() + annos = np.array(image_anno_dict[image_name], dtype=np.int32) + row = {"image": img, "annotation": annos} + writer.write_raw_data([row]) + writer.commit() + + +def create_fasterrcnn_dataset(mindrecord_file, batch_size=2, repeat_num=12, device_num=1, rank_id=0, + is_training=True, num_parallel_workers=4): + """Creatr FasterRcnn dataset with MindDataset.""" + ds = de.MindDataset(mindrecord_file, columns_list=["image", "annotation"], num_shards=device_num, shard_id=rank_id, + num_parallel_workers=1, shuffle=False) + decode = C.Decode() + ds = ds.map(operations=decode, input_columns=["image"], num_parallel_workers=1) + compose_map_func = (lambda image, annotation: preprocess_fn(image, annotation, is_training)) + + hwc_to_chw = C.HWC2CHW() + normalize_op = C.Normalize((123.675, 116.28, 103.53), (58.395, 57.12, 57.375)) + horizontally_op = C.RandomHorizontalFlip(1) + type_cast0 = CC.TypeCast(mstype.float32) + type_cast1 = CC.TypeCast(mstype.float16) + type_cast2 = CC.TypeCast(mstype.int32) + type_cast3 = CC.TypeCast(mstype.bool_) + + if is_training: + ds = ds.map(operations=compose_map_func, input_columns=["image", "annotation"], + output_columns=["image", "image_shape", "box", "label", "valid_num"], + column_order=["image", "image_shape", "box", "label", "valid_num"], + num_parallel_workers=num_parallel_workers) + + flip = (np.random.rand() < config.flip_ratio) + if flip: + ds = ds.map(operations=[normalize_op, type_cast0], input_columns=["image"], + num_parallel_workers=12) + ds = ds.map(operations=flipped_generation, + input_columns=["image", "image_shape", "box", "label", "valid_num"], + num_parallel_workers=num_parallel_workers) + else: + ds = ds.map(operations=[normalize_op, type_cast0], input_columns=["image"], + num_parallel_workers=12) + ds = ds.map(operations=[hwc_to_chw, type_cast1], input_columns=["image"], + num_parallel_workers=12) + + else: + ds = ds.map(operations=compose_map_func, + input_columns=["image", "annotation"], + output_columns=["image", "image_shape", "box", "label", "valid_num"], + column_order=["image", "image_shape", "box", "label", "valid_num"], + num_parallel_workers=num_parallel_workers) + + ds = ds.map(operations=[normalize_op, hwc_to_chw, type_cast1], input_columns=["image"], + num_parallel_workers=24) + + # transpose_column from python to c + ds = ds.map(operations=[type_cast1], input_columns=["image_shape"]) + ds = ds.map(operations=[type_cast1], input_columns=["box"]) + ds = ds.map(operations=[type_cast2], input_columns=["label"]) + ds = ds.map(operations=[type_cast3], input_columns=["valid_num"]) + ds = ds.batch(batch_size, drop_remainder=True) + ds = ds.repeat(repeat_num) + + return ds diff --git a/examples/model_security/model_attacks/cv/faster_rcnn/src/lr_schedule.py b/examples/model_security/model_attacks/cv/faster_rcnn/src/lr_schedule.py new file mode 100644 index 0000000..d46510a --- /dev/null +++ b/examples/model_security/model_attacks/cv/faster_rcnn/src/lr_schedule.py @@ -0,0 +1,42 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""lr generator for fasterrcnn""" +import math + +def linear_warmup_learning_rate(current_step, warmup_steps, base_lr, init_lr): + lr_inc = (float(base_lr) - float(init_lr)) / float(warmup_steps) + learning_rate = float(init_lr) + lr_inc * current_step + return learning_rate + +def a_cosine_learning_rate(current_step, base_lr, warmup_steps, decay_steps): + base = float(current_step - warmup_steps) / float(decay_steps) + learning_rate = (1 + math.cos(base * math.pi)) / 2 * base_lr + return learning_rate + +def dynamic_lr(config, rank_size=1): + """dynamic learning rate generator""" + base_lr = config.base_lr + + base_step = (config.base_step // rank_size) + rank_size + total_steps = int(base_step * config.total_epoch) + warmup_steps = int(config.warmup_step) + lr = [] + for i in range(total_steps): + if i < warmup_steps: + lr.append(linear_warmup_learning_rate(i, warmup_steps, base_lr, base_lr * config.warmup_ratio)) + else: + lr.append(a_cosine_learning_rate(i, base_lr, warmup_steps, total_steps)) + + return lr diff --git a/examples/model_security/model_attacks/cv/faster_rcnn/src/network_define.py b/examples/model_security/model_attacks/cv/faster_rcnn/src/network_define.py new file mode 100644 index 0000000..e923bc6 --- /dev/null +++ b/examples/model_security/model_attacks/cv/faster_rcnn/src/network_define.py @@ -0,0 +1,184 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""FasterRcnn training network wrapper.""" + +import time +import numpy as np +import mindspore.nn as nn +from mindspore.common.tensor import Tensor +from mindspore.ops import functional as F +from mindspore.ops import composite as C +from mindspore import ParameterTuple +from mindspore.train.callback import Callback +from mindspore.nn.wrap.grad_reducer import DistributedGradReducer + +# pylint: disable=locally-disabled, missing-docstring, unused-argument + + +time_stamp_init = False +time_stamp_first = 0 +class LossCallBack(Callback): + """ + Monitor the loss in training. + + If the loss is NAN or INF terminating training. + + Note: + If per_print_times is 0 do not print loss. + + Args: + per_print_times (int): Print loss every times. Default: 1. + """ + + def __init__(self, per_print_times=1, rank_id=0): + super(LossCallBack, self).__init__() + if not isinstance(per_print_times, int) or per_print_times < 0: + raise ValueError("print_step must be int and >= 0.") + self._per_print_times = per_print_times + self.count = 0 + self.rpn_loss_sum = 0 + self.rcnn_loss_sum = 0 + self.rpn_cls_loss_sum = 0 + self.rpn_reg_loss_sum = 0 + self.rcnn_cls_loss_sum = 0 + self.rcnn_reg_loss_sum = 0 + self.rank_id = rank_id + + global time_stamp_init, time_stamp_first + if not time_stamp_init: + time_stamp_first = time.time() + time_stamp_init = True + + def step_end(self, run_context): + cb_params = run_context.original_args() + rpn_loss = cb_params.net_outputs[0].asnumpy() + rcnn_loss = cb_params.net_outputs[1].asnumpy() + rpn_cls_loss = cb_params.net_outputs[2].asnumpy() + + rpn_reg_loss = cb_params.net_outputs[3].asnumpy() + rcnn_cls_loss = cb_params.net_outputs[4].asnumpy() + rcnn_reg_loss = cb_params.net_outputs[5].asnumpy() + + self.count += 1 + self.rpn_loss_sum += float(rpn_loss) + self.rcnn_loss_sum += float(rcnn_loss) + self.rpn_cls_loss_sum += float(rpn_cls_loss) + self.rpn_reg_loss_sum += float(rpn_reg_loss) + self.rcnn_cls_loss_sum += float(rcnn_cls_loss) + self.rcnn_reg_loss_sum += float(rcnn_reg_loss) + + cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1 + + if self.count >= 1: + global time_stamp_first + time_stamp_current = time.time() + + rpn_loss = self.rpn_loss_sum/self.count + rcnn_loss = self.rcnn_loss_sum/self.count + rpn_cls_loss = self.rpn_cls_loss_sum/self.count + + rpn_reg_loss = self.rpn_reg_loss_sum/self.count + rcnn_cls_loss = self.rcnn_cls_loss_sum/self.count + rcnn_reg_loss = self.rcnn_reg_loss_sum/self.count + + total_loss = rpn_loss + rcnn_loss + + loss_file = open("./loss_{}.log".format(self.rank_id), "a+") + loss_file.write("%lu epoch: %s step: %s ,rpn_loss: %.5f, rcnn_loss: %.5f, rpn_cls_loss: %.5f, " + "rpn_reg_loss: %.5f, rcnn_cls_loss: %.5f, rcnn_reg_loss: %.5f, total_loss: %.5f" % + (time_stamp_current - time_stamp_first, cb_params.cur_epoch_num, cur_step_in_epoch, + rpn_loss, rcnn_loss, rpn_cls_loss, rpn_reg_loss, + rcnn_cls_loss, rcnn_reg_loss, total_loss)) + loss_file.write("\n") + loss_file.close() + + self.count = 0 + self.rpn_loss_sum = 0 + self.rcnn_loss_sum = 0 + self.rpn_cls_loss_sum = 0 + self.rpn_reg_loss_sum = 0 + self.rcnn_cls_loss_sum = 0 + self.rcnn_reg_loss_sum = 0 + +class LossNet(nn.Cell): + """FasterRcnn loss method""" + def construct(self, x1, x2, x3, x4, x5, x6): + return x1 + x2 + +class WithLossCell(nn.Cell): + """ + Wrap the network with loss function to compute loss. + + Args: + backbone (Cell): The target network to wrap. + loss_fn (Cell): The loss function used to compute loss. + """ + def __init__(self, backbone, loss_fn): + super(WithLossCell, self).__init__(auto_prefix=False) + self._backbone = backbone + self._loss_fn = loss_fn + + def construct(self, x, img_shape, gt_bboxe, gt_label, gt_num): + loss1, loss2, loss3, loss4, loss5, loss6 = self._backbone(x, img_shape, gt_bboxe, gt_label, gt_num) + return self._loss_fn(loss1, loss2, loss3, loss4, loss5, loss6) + + @property + def backbone_network(self): + """ + Get the backbone network. + + Returns: + Cell, return backbone network. + """ + return self._backbone + + +class TrainOneStepCell(nn.Cell): + """ + Network training package class. + + Append an optimizer to the training network after that the construct function + can be called to create the backward graph. + + Args: + network (Cell): The training network. + network_backbone (Cell): The forward network. + optimizer (Cell): Optimizer for updating the weights. + sens (Number): The adjust parameter. Default value is 1.0. + reduce_flag (bool): The reduce flag. Default value is False. + mean (bool): Allreduce method. Default value is False. + degree (int): Device number. Default value is None. + """ + def __init__(self, network, network_backbone, optimizer, sens=1.0, reduce_flag=False, mean=True, degree=None): + super(TrainOneStepCell, self).__init__(auto_prefix=False) + self.network = network + self.network.set_grad() + self.backbone = network_backbone + self.weights = ParameterTuple(network.trainable_params()) + self.optimizer = optimizer + self.grad = C.GradOperation(get_by_list=True, + sens_param=True) + self.sens = Tensor((np.ones((1,)) * sens).astype(np.float16)) + self.reduce_flag = reduce_flag + if reduce_flag: + self.grad_reducer = DistributedGradReducer(optimizer.parameters, mean, degree) + + def construct(self, x, img_shape, gt_bboxe, gt_label, gt_num): + weights = self.weights + loss1, loss2, loss3, loss4, loss5, loss6 = self.backbone(x, img_shape, gt_bboxe, gt_label, gt_num) + grads = self.grad(self.network, weights)(x, img_shape, gt_bboxe, gt_label, gt_num, self.sens) + if self.reduce_flag: + grads = self.grad_reducer(grads) + return F.depend(loss1, self.optimizer(grads)), loss2, loss3, loss4, loss5, loss6 diff --git a/examples/model_security/model_attacks/cv/faster_rcnn/src/util.py b/examples/model_security/model_attacks/cv/faster_rcnn/src/util.py new file mode 100644 index 0000000..9b1045d --- /dev/null +++ b/examples/model_security/model_attacks/cv/faster_rcnn/src/util.py @@ -0,0 +1,227 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""coco eval for fasterrcnn""" +import json +import numpy as np +from pycocotools.coco import COCO +from pycocotools.cocoeval import COCOeval +import mmcv + +# pylint: disable=locally-disabled, invalid-name + +_init_value = np.array(0.0) +summary_init = { + 'Precision/mAP': _init_value, + 'Precision/mAP@.50IOU': _init_value, + 'Precision/mAP@.75IOU': _init_value, + 'Precision/mAP (small)': _init_value, + 'Precision/mAP (medium)': _init_value, + 'Precision/mAP (large)': _init_value, + 'Recall/AR@1': _init_value, + 'Recall/AR@10': _init_value, + 'Recall/AR@100': _init_value, + 'Recall/AR@100 (small)': _init_value, + 'Recall/AR@100 (medium)': _init_value, + 'Recall/AR@100 (large)': _init_value, +} + + +def coco_eval(result_files, result_types, coco, max_dets=(100, 300, 1000), single_result=False): + """coco eval for fasterrcnn""" + anns = json.load(open(result_files['bbox'])) + if not anns: + return summary_init + + if mmcv.is_str(coco): + coco = COCO(coco) + assert isinstance(coco, COCO) + + for res_type in result_types: + result_file = result_files[res_type] + assert result_file.endswith('.json') + + coco_dets = coco.loadRes(result_file) + gt_img_ids = coco.getImgIds() + det_img_ids = coco_dets.getImgIds() + iou_type = 'bbox' if res_type == 'proposal' else res_type + cocoEval = COCOeval(coco, coco_dets, iou_type) + if res_type == 'proposal': + cocoEval.params.useCats = 0 + cocoEval.params.maxDets = list(max_dets) + + tgt_ids = gt_img_ids if not single_result else det_img_ids + + if single_result: + res_dict = dict() + for id_i in tgt_ids: + cocoEval = COCOeval(coco, coco_dets, iou_type) + if res_type == 'proposal': + cocoEval.params.useCats = 0 + cocoEval.params.maxDets = list(max_dets) + + cocoEval.params.imgIds = [id_i] + cocoEval.evaluate() + cocoEval.accumulate() + cocoEval.summarize() + res_dict.update({coco.imgs[id_i]['file_name']: cocoEval.stats[1]}) + + cocoEval = COCOeval(coco, coco_dets, iou_type) + if res_type == 'proposal': + cocoEval.params.useCats = 0 + cocoEval.params.maxDets = list(max_dets) + + cocoEval.params.imgIds = tgt_ids + cocoEval.evaluate() + cocoEval.accumulate() + cocoEval.summarize() + + summary_metrics = { + 'Precision/mAP': cocoEval.stats[0], + 'Precision/mAP@.50IOU': cocoEval.stats[1], + 'Precision/mAP@.75IOU': cocoEval.stats[2], + 'Precision/mAP (small)': cocoEval.stats[3], + 'Precision/mAP (medium)': cocoEval.stats[4], + 'Precision/mAP (large)': cocoEval.stats[5], + 'Recall/AR@1': cocoEval.stats[6], + 'Recall/AR@10': cocoEval.stats[7], + 'Recall/AR@100': cocoEval.stats[8], + 'Recall/AR@100 (small)': cocoEval.stats[9], + 'Recall/AR@100 (medium)': cocoEval.stats[10], + 'Recall/AR@100 (large)': cocoEval.stats[11], + } + + return summary_metrics + + +def xyxy2xywh(bbox): + _bbox = bbox.tolist() + return [ + _bbox[0], + _bbox[1], + _bbox[2] - _bbox[0] + 1, + _bbox[3] - _bbox[1] + 1, + ] + +def bbox2result_1image(bboxes, labels, num_classes): + """Convert detection results to a list of numpy arrays. + + Args: + bboxes (Tensor): shape (n, 5) + labels (Tensor): shape (n, ) + num_classes (int): class number, including background class + + Returns: + list(ndarray): bbox results of each class + """ + if bboxes.shape[0] == 0: + result = [np.zeros((0, 5), dtype=np.float32) for i in range(num_classes - 1)] + else: + result = [bboxes[labels == i, :] for i in range(num_classes - 1)] + return result + +def proposal2json(dataset, results): + """convert proposal to json mode""" + img_ids = dataset.getImgIds() + json_results = [] + dataset_len = dataset.get_dataset_size()*2 + for idx in range(dataset_len): + img_id = img_ids[idx] + bboxes = results[idx] + for i in range(bboxes.shape[0]): + data = dict() + data['image_id'] = img_id + data['bbox'] = xyxy2xywh(bboxes[i]) + data['score'] = float(bboxes[i][4]) + data['category_id'] = 1 + json_results.append(data) + return json_results + +def det2json(dataset, results): + """convert det to json mode""" + cat_ids = dataset.getCatIds() + img_ids = dataset.getImgIds() + json_results = [] + dataset_len = len(img_ids) + for idx in range(dataset_len): + img_id = img_ids[idx] + if idx == len(results): break + result = results[idx] + for label, result_label in enumerate(result): + bboxes = result_label + for i in range(bboxes.shape[0]): + data = dict() + data['image_id'] = img_id + data['bbox'] = xyxy2xywh(bboxes[i]) + data['score'] = float(bboxes[i][4]) + data['category_id'] = cat_ids[label] + json_results.append(data) + return json_results + +def segm2json(dataset, results): + """convert segm to json mode""" + bbox_json_results = [] + segm_json_results = [] + for idx in range(len(dataset)): + img_id = dataset.img_ids[idx] + det, seg = results[idx] + for label, det_label in enumerate(det): + # bbox results + bboxes = det_label + for i in range(bboxes.shape[0]): + data = dict() + data['image_id'] = img_id + data['bbox'] = xyxy2xywh(bboxes[i]) + data['score'] = float(bboxes[i][4]) + data['category_id'] = dataset.cat_ids[label] + bbox_json_results.append(data) + + if len(seg) == 2: + segms = seg[0][label] + mask_score = seg[1][label] + else: + segms = seg[label] + mask_score = [bbox[4] for bbox in bboxes] + for i in range(bboxes.shape[0]): + data = dict() + data['image_id'] = img_id + data['score'] = float(mask_score[i]) + data['category_id'] = dataset.cat_ids[label] + segms[i]['counts'] = segms[i]['counts'].decode() + data['segmentation'] = segms[i] + segm_json_results.append(data) + return bbox_json_results, segm_json_results + +def results2json(dataset, results, out_file): + """convert result convert to json mode""" + result_files = dict() + if isinstance(results[0], list): + json_results = det2json(dataset, results) + result_files['bbox'] = '{}.{}.json'.format(out_file, 'bbox') + result_files['proposal'] = '{}.{}.json'.format(out_file, 'bbox') + mmcv.dump(json_results, result_files['bbox']) + elif isinstance(results[0], tuple): + json_results = segm2json(dataset, results) + result_files['bbox'] = '{}.{}.json'.format(out_file, 'bbox') + result_files['proposal'] = '{}.{}.json'.format(out_file, 'bbox') + result_files['segm'] = '{}.{}.json'.format(out_file, 'segm') + mmcv.dump(json_results[0], result_files['bbox']) + mmcv.dump(json_results[1], result_files['segm']) + elif isinstance(results[0], np.ndarray): + json_results = proposal2json(dataset, results) + result_files['proposal'] = '{}.{}.json'.format(out_file, 'proposal') + mmcv.dump(json_results, result_files['proposal']) + else: + raise TypeError('invalid type of results') + return result_files diff --git a/mindarmour/adv_robustness/attacks/gradient_method.py b/mindarmour/adv_robustness/attacks/gradient_method.py index 5412631..ea705e3 100644 --- a/mindarmour/adv_robustness/attacks/gradient_method.py +++ b/mindarmour/adv_robustness/attacks/gradient_method.py @@ -19,7 +19,7 @@ from abc import abstractmethod import numpy as np from mindspore import Tensor -from mindspore.nn import Cell, SoftmaxCrossEntropyWithLogits +from mindspore.nn import Cell from mindarmour.utils.util import WithLossCell, GradWrapWithLoss from mindarmour.utils.logger import LogUtil @@ -44,12 +44,13 @@ class GradientMethod(Attack): Default: None. bounds (tuple): Upper and lower bounds of data, indicating the data range. In form of (clip_min, clip_max). Default: None. - loss_fn (Loss): Loss function for optimization. Default: None. + loss_fn (Loss): Loss function for optimization. If None, the input network \ + is already equipped with loss function. Default: None. Examples: >>> inputs = np.array([[0.1, 0.2, 0.6], [0.3, 0, 0.4]]) >>> labels = np.array([[0, 1, 0, 0, 0], [0, 0, 1, 0, 0]]) - >>> attack = FastGradientMethod(network) + >>> attack = FastGradientMethod(network, loss_fn=SoftmaxCrossEntropyWithLogits(sparse=False)) >>> adv_x = attack.generate(inputs, labels) """ @@ -71,9 +72,10 @@ class GradientMethod(Attack): else: self._alpha = alpha if loss_fn is None: - loss_fn = SoftmaxCrossEntropyWithLogits(sparse=False) - with_loss_cell = WithLossCell(self._network, loss_fn) - self._grad_all = GradWrapWithLoss(with_loss_cell) + self._grad_all = self._network + else: + with_loss_cell = WithLossCell(self._network, loss_fn) + self._grad_all = GradWrapWithLoss(with_loss_cell) self._grad_all.set_train() def generate(self, inputs, labels): @@ -83,13 +85,19 @@ class GradientMethod(Attack): Args: inputs (numpy.ndarray): Benign input samples used as references to create adversarial examples. - labels (numpy.ndarray): Original/target labels. + labels (Union[numpy.ndarray, tuple]): Original/target labels. \ + For each input if it has more than one label, it is wrapped in a tuple. Returns: numpy.ndarray, generated adversarial examples. """ - inputs, labels = check_pair_numpy_param('inputs', inputs, - 'labels', labels) + if isinstance(labels, tuple): + for i, labels_item in enumerate(labels): + inputs, _ = check_pair_numpy_param('inputs', inputs, \ + 'labels[{}]'.format(i), labels_item) + else: + inputs, _ = check_pair_numpy_param('inputs', inputs, \ + 'labels', labels) self._dtype = inputs.dtype gradient = self._gradient(inputs, labels) # use random method or not @@ -117,7 +125,8 @@ class GradientMethod(Attack): Args: inputs (numpy.ndarray): Benign input samples used as references to create adversarial examples. - labels (numpy.ndarray): Original/target labels. + labels (Union[numpy.ndarray, tuple]): Original/target labels. \ + For each input if it has more than one label, it is wrapped in a tuple. Raises: NotImplementedError: It is an abstract method. @@ -149,12 +158,13 @@ class FastGradientMethod(GradientMethod): Possible values: np.inf, 1 or 2. Default: 2. is_targeted (bool): If True, targeted attack. If False, untargeted attack. Default: False. - loss_fn (Loss): Loss function for optimization. Default: None. + loss_fn (Loss): Loss function for optimization. If None, the input network \ + is already equipped with loss function. Default: None. Examples: >>> inputs = np.array([[0.1, 0.2, 0.6], [0.3, 0, 0.4]]) >>> labels = np.array([[0, 1, 0, 0, 0], [0, 0, 1, 0, 0]]) - >>> attack = FastGradientMethod(network) + >>> attack = FastGradientMethod(network, loss_fn=SoftmaxCrossEntropyWithLogits(sparse=False)) >>> adv_x = attack.generate(inputs, labels) """ @@ -175,12 +185,19 @@ class FastGradientMethod(GradientMethod): Args: inputs (numpy.ndarray): Input sample. - labels (numpy.ndarray): Original/target label. + labels (Union[numpy.ndarray, tuple]): Original/target labels. \ + For each input if it has more than one label, it is wrapped in a tuple. Returns: numpy.ndarray, gradient of inputs. """ - out_grad = self._grad_all(Tensor(inputs), Tensor(labels)) + if isinstance(labels, tuple): + labels_tensor = tuple() + for item in labels: + labels_tensor += (Tensor(item),) + else: + labels_tensor = (Tensor(labels),) + out_grad = self._grad_all(Tensor(inputs), *labels_tensor) if isinstance(out_grad, tuple): out_grad = out_grad[0] gradient = out_grad.asnumpy() @@ -210,7 +227,8 @@ class RandomFastGradientMethod(FastGradientMethod): Possible values: np.inf, 1 or 2. Default: 2. is_targeted (bool): If True, targeted attack. If False, untargeted attack. Default: False. - loss_fn (Loss): Loss function for optimization. Default: None. + loss_fn (Loss): Loss function for optimization. If None, the input network \ + is already equipped with loss function. Default: None. Raises: ValueError: eps is smaller than alpha! @@ -218,7 +236,7 @@ class RandomFastGradientMethod(FastGradientMethod): Examples: >>> inputs = np.array([[0.1, 0.2, 0.6], [0.3, 0, 0.4]]) >>> labels = np.array([[0, 1, 0, 0, 0], [0, 0, 1, 0, 0]]) - >>> attack = RandomFastGradientMethod(network) + >>> attack = RandomFastGradientMethod(network, loss_fn=SoftmaxCrossEntropyWithLogits(sparse=False)) >>> adv_x = attack.generate(inputs, labels) """ @@ -254,12 +272,13 @@ class FastGradientSignMethod(GradientMethod): In form of (clip_min, clip_max). Default: (0.0, 1.0). is_targeted (bool): If True, targeted attack. If False, untargeted attack. Default: False. - loss_fn (Loss): Loss function for optimization. Default: None. + loss_fn (Loss): Loss function for optimization. If None, the input network \ + is already equipped with loss function. Default: None. Examples: >>> inputs = np.array([[0.1, 0.2, 0.6], [0.3, 0, 0.4]]) >>> labels = np.array([[0, 1, 0, 0, 0], [0, 0, 1, 0, 0]]) - >>> attack = FastGradientSignMethod(network) + >>> attack = FastGradientSignMethod(network, loss_fn=SoftmaxCrossEntropyWithLogits(sparse=False)) >>> adv_x = attack.generate(inputs, labels) """ @@ -279,12 +298,19 @@ class FastGradientSignMethod(GradientMethod): Args: inputs (numpy.ndarray): Input samples. - labels (numpy.ndarray): Original/target labels. + labels (union[numpy.ndarray, tuple]): original/target labels. \ + for each input if it has more than one label, it is wrapped in a tuple. Returns: numpy.ndarray, gradient of inputs. """ - out_grad = self._grad_all(Tensor(inputs), Tensor(labels)) + if isinstance(labels, tuple): + labels_tensor = tuple() + for item in labels: + labels_tensor += (Tensor(item),) + else: + labels_tensor = (Tensor(labels),) + out_grad = self._grad_all(Tensor(inputs), *labels_tensor) if isinstance(out_grad, tuple): out_grad = out_grad[0] gradient = out_grad.asnumpy() @@ -311,7 +337,8 @@ class RandomFastGradientSignMethod(FastGradientSignMethod): In form of (clip_min, clip_max). Default: (0.0, 1.0). is_targeted (bool): True: targeted attack. False: untargeted attack. Default: False. - loss_fn (Loss): Loss function for optimization. Default: None. + loss_fn (Loss): Loss function for optimization. If None, the input network \ + is already equipped with loss function. Default: None. Raises: ValueError: eps is smaller than alpha! @@ -319,7 +346,7 @@ class RandomFastGradientSignMethod(FastGradientSignMethod): Examples: >>> inputs = np.array([[0.1, 0.2, 0.6], [0.3, 0, 0.4]]) >>> labels = np.array([[0, 1, 0, 0, 0], [0, 0, 1, 0, 0]]) - >>> attack = RandomFastGradientSignMethod(network) + >>> attack = RandomFastGradientSignMethod(network, loss_fn=SoftmaxCrossEntropyWithLogits(sparse=False)) >>> adv_x = attack.generate(inputs, labels) """ @@ -350,12 +377,13 @@ class LeastLikelyClassMethod(FastGradientSignMethod): Default: None. bounds (tuple): Upper and lower bounds of data, indicating the data range. In form of (clip_min, clip_max). Default: (0.0, 1.0). - loss_fn (Loss): Loss function for optimization. Default: None. + loss_fn (Loss): Loss function for optimization. If None, the input network \ + is already equipped with loss function. Default: None. Examples: >>> inputs = np.array([[0.1, 0.2, 0.6], [0.3, 0, 0.4]]) >>> labels = np.array([[0, 1, 0, 0, 0], [0, 0, 1, 0, 0]]) - >>> attack = LeastLikelyClassMethod(network) + >>> attack = LeastLikelyClassMethod(network, loss_fn=SoftmaxCrossEntropyWithLogits(sparse=False)) >>> adv_x = attack.generate(inputs, labels) """ @@ -384,7 +412,8 @@ class RandomLeastLikelyClassMethod(FastGradientSignMethod): Default: 0.035. bounds (tuple): Upper and lower bounds of data, indicating the data range. In form of (clip_min, clip_max). Default: (0.0, 1.0). - loss_fn (Loss): Loss function for optimization. + loss_fn (Loss): Loss function for optimization. If None, the input network \ + is already equipped with loss function. Default: None. Raises: ValueError: eps is smaller than alpha! @@ -392,7 +421,7 @@ class RandomLeastLikelyClassMethod(FastGradientSignMethod): Examples: >>> inputs = np.array([[0.1, 0.2, 0.6], [0.3, 0, 0.4]]) >>> labels = np.array([[0, 1, 0, 0, 0], [0, 0, 1, 0, 0]]) - >>> attack = RandomLeastLikelyClassMethod(network) + >>> attack = RandomLeastLikelyClassMethod(network, loss_fn=SoftmaxCrossEntropyWithLogits(sparse=False)) >>> adv_x = attack.generate(inputs, labels) """ diff --git a/mindarmour/adv_robustness/attacks/iterative_gradient_method.py b/mindarmour/adv_robustness/attacks/iterative_gradient_method.py index 6f94d3d..462edbe 100644 --- a/mindarmour/adv_robustness/attacks/iterative_gradient_method.py +++ b/mindarmour/adv_robustness/attacks/iterative_gradient_method.py @@ -17,7 +17,7 @@ from abc import abstractmethod import numpy as np from PIL import Image, ImageOps -from mindspore.nn import Cell, SoftmaxCrossEntropyWithLogits +from mindspore.nn import Cell from mindspore import Tensor from mindarmour.utils.logger import LogUtil @@ -114,7 +114,8 @@ class IterativeGradientMethod(Attack): bounds (tuple): Upper and lower bounds of data, indicating the data range. In form of (clip_min, clip_max). Default: (0.0, 1.0). nb_iter (int): Number of iteration. Default: 5. - loss_fn (Loss): Loss function for optimization. Default: None. + loss_fn (Loss): Loss function for optimization. If None, the input network \ + is already equipped with loss function. Default: None. """ def __init__(self, network, eps=0.3, eps_iter=0.1, bounds=(0.0, 1.0), nb_iter=5, loss_fn=None): @@ -123,12 +124,15 @@ class IterativeGradientMethod(Attack): self._eps = check_value_positive('eps', eps) self._eps_iter = check_value_positive('eps_iter', eps_iter) self._nb_iter = check_int_positive('nb_iter', nb_iter) - self._bounds = check_param_multi_types('bounds', bounds, [list, tuple]) - for b in self._bounds: - _ = check_param_multi_types('bound', b, [int, float]) + self._bounds = None + if bounds is not None: + self._bounds = check_param_multi_types('bounds', bounds, [list, tuple]) + for b in self._bounds: + _ = check_param_multi_types('bound', b, [int, float]) if loss_fn is None: - loss_fn = SoftmaxCrossEntropyWithLogits(sparse=False) - self._loss_grad = GradWrapWithLoss(WithLossCell(self._network, loss_fn)) + self._loss_grad = network + else: + self._loss_grad = GradWrapWithLoss(WithLossCell(self._network, loss_fn)) self._loss_grad.set_train() @abstractmethod @@ -139,8 +143,8 @@ class IterativeGradientMethod(Attack): Args: inputs (numpy.ndarray): Benign input samples used as references to create adversarial examples. - labels (numpy.ndarray): Original/target labels. - + labels (Union[numpy.ndarray, tuple]): Original/target labels. \ + For each input if it has more than one label, it is wrapped in a tuple. Raises: NotImplementedError: This function is not available in IterativeGradientMethod. @@ -177,12 +181,13 @@ class BasicIterativeMethod(IterativeGradientMethod): is_targeted (bool): If True, targeted attack. If False, untargeted attack. Default: False. nb_iter (int): Number of iteration. Default: 5. - loss_fn (Loss): Loss function for optimization. Default: None. + loss_fn (Loss): Loss function for optimization. If None, the input network \ + is already equipped with loss function. Default: None. attack (class): The single step gradient method of each iteration. In this class, FGSM is used. Examples: - >>> attack = BasicIterativeMethod(network) + >>> attack = BasicIterativeMethod(network, loss_fn=SoftmaxCrossEntropyWithLogits(sparse=False)) """ def __init__(self, network, eps=0.3, eps_iter=0.1, bounds=(0.0, 1.0), is_targeted=False, nb_iter=5, loss_fn=None): @@ -207,8 +212,8 @@ class BasicIterativeMethod(IterativeGradientMethod): Args: inputs (numpy.ndarray): Benign input samples used as references to create adversarial examples. - labels (numpy.ndarray): Original/target labels. - + labels (Union[numpy.ndarray, tuple]): Original/target labels. \ + For each input if it has more than one label, it is wrapped in a tuple. Returns: numpy.ndarray, generated adversarial examples. @@ -218,8 +223,13 @@ class BasicIterativeMethod(IterativeGradientMethod): >>> [[0, 0, 1, 0, 0, 0, 0, 0, 0, 0], >>> [0, 0, 0, 0, 0, 0, 1, 0, 0, 0]]) """ - inputs, labels = check_pair_numpy_param('inputs', inputs, - 'labels', labels) + if isinstance(labels, tuple): + for i, labels_item in enumerate(labels): + inputs, _ = check_pair_numpy_param('inputs', inputs, \ + 'labels[{}]'.format(i), labels_item) + else: + inputs, _ = check_pair_numpy_param('inputs', inputs, \ + 'labels', labels) arr_x = inputs if self._bounds is not None: clip_min, clip_max = self._bounds @@ -267,7 +277,8 @@ class MomentumIterativeMethod(IterativeGradientMethod): decay_factor (float): Decay factor in iterations. Default: 1.0. norm_level (Union[int, numpy.inf]): Order of the norm. Possible values: np.inf, 1 or 2. Default: 'inf'. - loss_fn (Loss): Loss function for optimization. Default: None. + loss_fn (Loss): Loss function for optimization. If None, the input network \ + is already equipped with loss function. Default: None. """ def __init__(self, network, eps=0.3, eps_iter=0.1, bounds=(0.0, 1.0), @@ -290,7 +301,8 @@ class MomentumIterativeMethod(IterativeGradientMethod): Args: inputs (numpy.ndarray): Benign input samples used as references to create adversarial examples. - labels (numpy.ndarray): Original/target labels. + labels (Union[numpy.ndarray, tuple]): Original/target labels. \ + For each input if it has more than one label, it is wrapped in a tuple. Returns: numpy.ndarray, generated adversarial examples. @@ -301,8 +313,13 @@ class MomentumIterativeMethod(IterativeGradientMethod): >>> [[0, 0, 0, 0, 0, 0, 0, 0, 1, 0], >>> [0, 0, 0, 0, 0, 1, 0, 0, 0, 0]]) """ - inputs, labels = check_pair_numpy_param('inputs', inputs, - 'labels', labels) + if isinstance(labels, tuple): + for i, labels_item in enumerate(labels): + inputs, _ = check_pair_numpy_param('inputs', inputs, \ + 'labels[{}]'.format(i), labels_item) + else: + inputs, _ = check_pair_numpy_param('inputs', inputs, \ + 'labels', labels) arr_x = inputs momentum = 0 if self._bounds is not None: @@ -340,7 +357,8 @@ class MomentumIterativeMethod(IterativeGradientMethod): Args: inputs (numpy.ndarray): Input samples. - labels (numpy.ndarray): Original/target labels. + labels (Union[numpy.ndarray, tuple]): Original/target labels. \ + For each input if it has more than one label, it is wrapped in a tuple. Returns: numpy.ndarray, gradient of labels w.r.t inputs. @@ -350,7 +368,13 @@ class MomentumIterativeMethod(IterativeGradientMethod): >>> [[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]) """ # get grad of loss over x - out_grad = self._loss_grad(Tensor(inputs), Tensor(labels)) + if isinstance(labels, tuple): + labels_tensor = tuple() + for item in labels: + labels_tensor += (Tensor(item),) + else: + labels_tensor = (Tensor(labels),) + out_grad = self._loss_grad(Tensor(inputs), *labels_tensor) if isinstance(out_grad, tuple): out_grad = out_grad[0] gradient = out_grad.asnumpy() @@ -384,7 +408,8 @@ class ProjectedGradientDescent(BasicIterativeMethod): nb_iter (int): Number of iteration. Default: 5. norm_level (Union[int, numpy.inf]): Order of the norm. Possible values: np.inf, 1 or 2. Default: 'inf'. - loss_fn (Loss): Loss function for optimization. Default: None. + loss_fn (Loss): Loss function for optimization. If None, the input network \ + is already equipped with loss function. Default: None. """ def __init__(self, network, eps=0.3, eps_iter=0.1, bounds=(0.0, 1.0), @@ -406,7 +431,8 @@ class ProjectedGradientDescent(BasicIterativeMethod): Args: inputs (numpy.ndarray): Benign input samples used as references to create adversarial examples. - labels (numpy.ndarray): Original/target labels. + labels (Union[numpy.ndarray, tuple]): Original/target labels. \ + For each input if it has more than one label, it is wrapped in a tuple. Returns: numpy.ndarray, generated adversarial examples. @@ -417,8 +443,13 @@ class ProjectedGradientDescent(BasicIterativeMethod): >>> [[0, 0, 0, 0, 0, 0, 0, 0, 0, 1], >>> [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]]) """ - inputs, labels = check_pair_numpy_param('inputs', inputs, - 'labels', labels) + if isinstance(labels, tuple): + for i, labels_item in enumerate(labels): + inputs, _ = check_pair_numpy_param('inputs', inputs, \ + 'labels[{}]'.format(i), labels_item) + else: + inputs, _ = check_pair_numpy_param('inputs', inputs, \ + 'labels', labels) arr_x = inputs if self._bounds is not None: clip_min, clip_max = self._bounds @@ -460,7 +491,8 @@ class DiverseInputIterativeMethod(BasicIterativeMethod): is_targeted (bool): If True, targeted attack. If False, untargeted attack. Default: False. prob (float): Transformation probability. Default: 0.5. - loss_fn (Loss): Loss function for optimization. Default: None. + loss_fn (Loss): Loss function for optimization. If None, the input network \ + is already equipped with loss function. Default: None. """ def __init__(self, network, eps=0.3, bounds=(0.0, 1.0), is_targeted=False, prob=0.5, loss_fn=None): @@ -495,7 +527,8 @@ class MomentumDiverseInputIterativeMethod(MomentumIterativeMethod): norm_level (Union[int, numpy.inf]): Order of the norm. Possible values: np.inf, 1 or 2. Default: 'l1'. prob (float): Transformation probability. Default: 0.5. - loss_fn (Loss): Loss function for optimization. Default: None. + loss_fn (Loss): Loss function for optimization. If None, the input network \ + is already equipped with loss function. Default: None. """ def __init__(self, network, eps=0.3, bounds=(0.0, 1.0), is_targeted=False, norm_level='l1', prob=0.5, loss_fn=None): diff --git a/mindarmour/fuzz_testing/fuzzing.py b/mindarmour/fuzz_testing/fuzzing.py index ff14adf..407ed90 100644 --- a/mindarmour/fuzz_testing/fuzzing.py +++ b/mindarmour/fuzz_testing/fuzzing.py @@ -19,6 +19,7 @@ from random import choice import numpy as np from mindspore import Model from mindspore import Tensor +from mindspore import nn from mindarmour.utils._check_param import check_model, check_numpy_param, \ check_param_multi_types, check_norm_level, check_param_in_range, \ @@ -451,6 +452,8 @@ class Fuzzer: else: network = self._target_model._network loss_fn = self._target_model._loss_fn + if loss_fn is None: + loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=False) mutates[method] = self._strategies[method](network, loss_fn=loss_fn) return mutates diff --git a/tests/ut/python/adv_robustness/attacks/test_batch_generate_attack.py b/tests/ut/python/adv_robustness/attacks/test_batch_generate_attack.py index 23e5838..f2c92e9 100644 --- a/tests/ut/python/adv_robustness/attacks/test_batch_generate_attack.py +++ b/tests/ut/python/adv_robustness/attacks/test_batch_generate_attack.py @@ -18,7 +18,7 @@ import numpy as np import pytest import mindspore.ops.operations as P -from mindspore.nn import Cell +from mindspore.nn import Cell, SoftmaxCrossEntropyWithLogits import mindspore.context as context from mindarmour.adv_robustness.attacks import FastGradientMethod @@ -67,7 +67,7 @@ def test_batch_generate_attack(): label = np.random.randint(0, 10, 128).astype(np.int32) label = np.eye(10)[label].astype(np.float32) - attack = FastGradientMethod(Net()) + attack = FastGradientMethod(Net(), loss_fn=SoftmaxCrossEntropyWithLogits(sparse=False)) ms_adv_x = attack.batch_generate(input_np, label, batch_size=32) assert np.any(ms_adv_x != input_np), 'Fast gradient method: generate value' \ diff --git a/tests/ut/python/adv_robustness/attacks/test_gradient_method.py b/tests/ut/python/adv_robustness/attacks/test_gradient_method.py index 8e6707c..bf7a638 100644 --- a/tests/ut/python/adv_robustness/attacks/test_gradient_method.py +++ b/tests/ut/python/adv_robustness/attacks/test_gradient_method.py @@ -71,7 +71,7 @@ def test_fast_gradient_method(): label = np.asarray([2], np.int32) label = np.eye(3)[label].astype(np.float32) - attack = FastGradientMethod(Net()) + attack = FastGradientMethod(Net(), loss_fn=SoftmaxCrossEntropyWithLogits(sparse=False)) ms_adv_x = attack.generate(input_np, label) assert np.any(ms_adv_x != input_np), 'Fast gradient method: generate value' \ @@ -91,7 +91,7 @@ def test_fast_gradient_method_gpu(): label = np.asarray([2], np.int32) label = np.eye(3)[label].astype(np.float32) - attack = FastGradientMethod(Net()) + attack = FastGradientMethod(Net(), loss_fn=SoftmaxCrossEntropyWithLogits(sparse=False)) ms_adv_x = attack.generate(input_np, label) assert np.any(ms_adv_x != input_np), 'Fast gradient method: generate value' \ @@ -132,7 +132,7 @@ def test_random_fast_gradient_method(): label = np.asarray([2], np.int32) label = np.eye(3)[label].astype(np.float32) - attack = RandomFastGradientMethod(Net()) + attack = RandomFastGradientMethod(Net(), loss_fn=SoftmaxCrossEntropyWithLogits(sparse=False)) ms_adv_x = attack.generate(input_np, label) assert np.any(ms_adv_x != input_np), 'Random fast gradient method: ' \ @@ -154,7 +154,7 @@ def test_fast_gradient_sign_method(): label = np.asarray([2], np.int32) label = np.eye(3)[label].astype(np.float32) - attack = FastGradientSignMethod(Net()) + attack = FastGradientSignMethod(Net(), loss_fn=SoftmaxCrossEntropyWithLogits(sparse=False)) ms_adv_x = attack.generate(input_np, label) assert np.any(ms_adv_x != input_np), 'Fast gradient sign method: generate' \ @@ -176,7 +176,7 @@ def test_random_fast_gradient_sign_method(): label = np.asarray([2], np.int32) label = np.eye(28)[label].astype(np.float32) - attack = RandomFastGradientSignMethod(Net()) + attack = RandomFastGradientSignMethod(Net(), loss_fn=SoftmaxCrossEntropyWithLogits(sparse=False)) ms_adv_x = attack.generate(input_np, label) assert np.any(ms_adv_x != input_np), 'Random fast gradient sign method: ' \ @@ -198,7 +198,7 @@ def test_least_likely_class_method(): label = np.asarray([2], np.int32) label = np.eye(3)[label].astype(np.float32) - attack = LeastLikelyClassMethod(Net()) + attack = LeastLikelyClassMethod(Net(), loss_fn=SoftmaxCrossEntropyWithLogits(sparse=False)) ms_adv_x = attack.generate(input_np, label) assert np.any(ms_adv_x != input_np), 'Least likely class method: generate' \ @@ -220,7 +220,8 @@ def test_random_least_likely_class_method(): label = np.asarray([2], np.int32) label = np.eye(3)[label].astype(np.float32) - attack = RandomLeastLikelyClassMethod(Net(), eps=0.1, alpha=0.01) + attack = RandomLeastLikelyClassMethod(Net(), eps=0.1, alpha=0.01, \ + loss_fn=SoftmaxCrossEntropyWithLogits(sparse=False)) ms_adv_x = attack.generate(input_np, label) assert np.any(ms_adv_x != input_np), 'Random least likely class method: ' \ @@ -239,5 +240,6 @@ def test_assert_error(): """ context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") with pytest.raises(ValueError) as e: - assert RandomLeastLikelyClassMethod(Net(), eps=0.05, alpha=0.21) + assert RandomLeastLikelyClassMethod(Net(), eps=0.05, alpha=0.21, \ + loss_fn=SoftmaxCrossEntropyWithLogits(sparse=False)) assert str(e.value) == 'eps must be larger than alpha!' diff --git a/tests/ut/python/adv_robustness/attacks/test_iterative_gradient_method.py b/tests/ut/python/adv_robustness/attacks/test_iterative_gradient_method.py index 8263468..da330bc 100644 --- a/tests/ut/python/adv_robustness/attacks/test_iterative_gradient_method.py +++ b/tests/ut/python/adv_robustness/attacks/test_iterative_gradient_method.py @@ -20,6 +20,7 @@ import pytest from mindspore.ops import operations as P from mindspore.nn import Cell from mindspore import context +from mindspore.nn import SoftmaxCrossEntropyWithLogits from mindarmour.adv_robustness.attacks import BasicIterativeMethod from mindarmour.adv_robustness.attacks import MomentumIterativeMethod @@ -70,7 +71,7 @@ def test_basic_iterative_method(): for i in range(5): net = Net() - attack = BasicIterativeMethod(net, nb_iter=i + 1) + attack = BasicIterativeMethod(net, nb_iter=i + 1, loss_fn=SoftmaxCrossEntropyWithLogits(sparse=False)) ms_adv_x = attack.generate(input_np, label) assert np.any( ms_adv_x != input_np), 'Basic iterative method: generate value' \ @@ -91,7 +92,7 @@ def test_momentum_iterative_method(): label = np.eye(3)[label].astype(np.float32) for i in range(5): - attack = MomentumIterativeMethod(Net(), nb_iter=i + 1) + attack = MomentumIterativeMethod(Net(), nb_iter=i + 1, loss_fn=SoftmaxCrossEntropyWithLogits(sparse=False)) ms_adv_x = attack.generate(input_np, label) assert np.any(ms_adv_x != input_np), 'Momentum iterative method: generate' \ ' value must not be equal to' \ @@ -112,7 +113,7 @@ def test_projected_gradient_descent_method(): label = np.eye(3)[label].astype(np.float32) for i in range(5): - attack = ProjectedGradientDescent(Net(), nb_iter=i + 1) + attack = ProjectedGradientDescent(Net(), nb_iter=i + 1, loss_fn=SoftmaxCrossEntropyWithLogits(sparse=False)) ms_adv_x = attack.generate(input_np, label) assert np.any( @@ -134,7 +135,7 @@ def test_diverse_input_iterative_method(): label = np.asarray([2], np.int32) label = np.eye(3)[label].astype(np.float32) - attack = DiverseInputIterativeMethod(Net()) + attack = DiverseInputIterativeMethod(Net(), loss_fn=SoftmaxCrossEntropyWithLogits(sparse=False)) ms_adv_x = attack.generate(input_np, label) assert np.any(ms_adv_x != input_np), 'Diverse input iterative method: generate' \ ' value must not be equal to' \ @@ -154,7 +155,7 @@ def test_momentum_diverse_input_iterative_method(): label = np.asarray([2], np.int32) label = np.eye(3)[label].astype(np.float32) - attack = MomentumDiverseInputIterativeMethod(Net()) + attack = MomentumDiverseInputIterativeMethod(Net(), loss_fn=SoftmaxCrossEntropyWithLogits(sparse=False)) ms_adv_x = attack.generate(input_np, label) assert np.any(ms_adv_x != input_np), 'Momentum diverse input iterative method: ' \ 'generate value must not be equal to' \ @@ -167,10 +168,7 @@ def test_momentum_diverse_input_iterative_method(): @pytest.mark.env_card @pytest.mark.component_mindarmour def test_error(): - with pytest.raises(TypeError): - # check_param_multi_types - assert IterativeGradientMethod(Net(), bounds=None) - attack = IterativeGradientMethod(Net(), bounds=(0.0, 1.0)) + attack = IterativeGradientMethod(Net(), bounds=(0.0, 1.0), loss_fn=SoftmaxCrossEntropyWithLogits(sparse=False)) with pytest.raises(NotImplementedError): input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32) label = np.asarray([2], np.int32) diff --git a/tests/ut/python/adv_robustness/defenses/test_ead.py b/tests/ut/python/adv_robustness/defenses/test_ead.py index eb057e7..e1bd240 100644 --- a/tests/ut/python/adv_robustness/defenses/test_ead.py +++ b/tests/ut/python/adv_robustness/defenses/test_ead.py @@ -59,8 +59,8 @@ def test_ead(): optimizer = Momentum(net.trainable_params(), 0.001, 0.9) net = Net() - fgsm = FastGradientSignMethod(net) - pgd = ProjectedGradientDescent(net) + fgsm = FastGradientSignMethod(net, loss_fn=loss_fn) + pgd = ProjectedGradientDescent(net, loss_fn=loss_fn) ead = EnsembleAdversarialDefense(net, [fgsm, pgd], loss_fn=loss_fn, optimizer=optimizer) LOGGER.set_level(logging.DEBUG) diff --git a/tests/ut/python/fuzzing/test_coverage_metrics.py b/tests/ut/python/fuzzing/test_coverage_metrics.py index 282e1f4..b4912a5 100644 --- a/tests/ut/python/fuzzing/test_coverage_metrics.py +++ b/tests/ut/python/fuzzing/test_coverage_metrics.py @@ -117,7 +117,7 @@ def test_lenet_mnist_coverage_ascend(): LOGGER.info(TAG, 'SNAC of this test is : %s', model_fuzz_test.get_snac()) # generate adv_data - attack = FastGradientSignMethod(net, eps=0.3) + attack = FastGradientSignMethod(net, eps=0.3, loss_fn=nn.SoftmaxCrossEntropyWithLogits(sparse=False)) adv_data = attack.batch_generate(test_data, test_labels, batch_size=32) model_fuzz_test.calculate_coverage(adv_data, bias_coefficient=0.5) LOGGER.info(TAG, 'KMNC of this test is : %s', model_fuzz_test.get_kmnc())