Browse Source

modify url

tags/v1.8.0
huodagu 3 years ago
parent
commit
2486210810
3 changed files with 11 additions and 7 deletions
  1. +4
    -0
      .jenkins/check/config/filter_linklint.txt
  2. +3
    -3
      examples/natural_robustness/ocr_evaluate/cnn_ctc/README.md
  3. +4
    -4
      examples/natural_robustness/ocr_evaluate/cnn_ctc/README_CN.md

+ 4
- 0
.jenkins/check/config/filter_linklint.txt View File

@@ -0,0 +1,4 @@
# akg-third-party
# file directory: mindspore/akg/third_party/incubator-tvm/

https://www.mindspore.cn/*/en/master/*

+ 3
- 3
examples/natural_robustness/ocr_evaluate/cnn_ctc/README.md View File

@@ -94,7 +94,7 @@ This takes around 75 minutes.

## Mixed Precision

The [mixed precision](https://www.mindspore.cn/docs/programming_guide/en/master/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
The [mixed precision](https://www.mindspore.cn/tutorials/experts/en/master/others/mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’.

# [Environment Requirements](#contents)
@@ -108,7 +108,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
- For more information, please check the resources below:
- [MindSpore tutorials](https://www.mindspore.cn/tutorials/en/master/index.html)

- [MindSpore Python API](https://www.mindspore.cn/docs/api/en/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/docs/en/master/index.html)

# [Quick Start](#contents)

@@ -517,7 +517,7 @@ accuracy: 0.8533

### Inference

If you need to use the trained model to perform inference on multiple hardware platforms, such as GPU, Ascend 910 or Ascend 310, you can refer to this [Link](https://www.mindspore.cn/docs/programming_guide/en/master/multi_platform_inference.html). Following the steps below, this is a simple example:
If you need to use the trained model to perform inference on multiple hardware platforms, such as GPU, Ascend 910 or Ascend 310, you can refer to this [Link](https://www.mindspore.cn/tutorials/experts/en/master/model_infer/inference.html). Following the steps below, this is a simple example:

- Running on Ascend



+ 4
- 4
examples/natural_robustness/ocr_evaluate/cnn_ctc/README_CN.md View File

@@ -95,7 +95,7 @@ python src/preprocess_dataset.py

## 混合精度

采用[混合精度](https://www.mindspore.cn/docs/programming_guide/zh-CN/master/enable_mixed_precision.html)的训练方法使用支持单精度和半精度数据来提高深度学习神经网络的训练速度,同时保持单精度训练所能达到的网络精度。混合精度训练提高计算速度、减少内存使用的同时,支持在特定硬件上训练更大的模型或实现更大批次的训练。
采用[混合精度](https://www.mindspore.cn/tutorials/experts/zh-CN/master/others/mixed_precision.html)的训练方法使用支持单精度和半精度数据来提高深度学习神经网络的训练速度,同时保持单精度训练所能达到的网络精度。混合精度训练提高计算速度、减少内存使用的同时,支持在特定硬件上训练更大的模型或实现更大批次的训练。
以FP16算子为例,如果输入数据类型为FP32,MindSpore后台会自动降低精度来处理数据。用户可打开INFO日志,搜索“reduce precision”查看精度降低的算子。

# 环境要求
@@ -111,7 +111,7 @@ python src/preprocess_dataset.py
- 如需查看详情,请参见如下资源:
- [MindSpore教程](https://www.mindspore.cn/tutorials/zh-CN/master/index.html)

- [MindSpore Python API](https://www.mindspore.cn/docs/api/zh-CN/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/docs/zh-CN/master/index.html)

# 快速入门

@@ -250,7 +250,7 @@ bash scripts/run_distribute_train_ascend.sh [RANK_TABLE_FILE] [PRETRAINED_CKPT(o

> 注意:

RANK_TABLE_FILE相关参考资料见[链接](https://www.mindspore.cn/docs/programming_guide/zh-CN/master/distributed_training_ascend.html), 获取device_ip方法详见[链接](https://gitee.com/mindspore/models/tree/master/utils/hccl_tools).
RANK_TABLE_FILE相关参考资料见[链接](https://www.mindspore.cn/tutorials/experts/zh-CN/master/parallel/distributed_training_ascend.html), 获取device_ip方法详见[链接](https://gitee.com/mindspore/models/tree/master/utils/hccl_tools).

### 训练结果

@@ -449,7 +449,7 @@ bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DVPP] [DEVICE_ID]

### 推理

如果您需要在GPU、Ascend 910、Ascend 310等多个硬件平台上使用训练好的模型进行推理,请参考此[链接](https://www.mindspore.cn/docs/programming_guide/zh-CN/master/multi_platform_inference.html)。以下为简单示例:
如果您需要在GPU、Ascend 910、Ascend 310等多个硬件平台上使用训练好的模型进行推理,请参考此[链接](https://www.mindspore.cn/tutorials/experts/zh-CN/master/model_infer/inference.html)。以下为简单示例:

- Ascend处理器环境运行



Loading…
Cancel
Save