Browse Source

a new feature add: concept drift

tags/v1.6.0
wuxiaoyu (F) 4 years ago
parent
commit
28044efa31
7 changed files with 597 additions and 1 deletions
  1. +46
    -0
      examples/reliability/concept_drift_time_series.py
  2. +3
    -1
      mindarmour/__init__.py
  3. +0
    -0
      mindarmour/reliability/__init__.py
  4. +92
    -0
      mindarmour/reliability/concept_drift/README.md
  5. +0
    -0
      mindarmour/reliability/concept_drift/__init__.py
  6. +404
    -0
      mindarmour/reliability/concept_drift/concept_drift_check_time_series.py
  7. +52
    -0
      tests/ut/python/reliability/concept_drift/test_concept_drift_time_series.py

+ 46
- 0
examples/reliability/concept_drift_time_series.py View File

@@ -0,0 +1,46 @@
# -*- coding: utf-8 -*-
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


"""
Concept drift example.
Download dataset from: https://www.kaggle.com/camnugent/sandp500.
File structure:
--archive
--individual_stocks_5yr
--__MACOSX
--individual_stocks_5yr
--all_stocks_5yr.csv
--getSandP.py
--merge.sh
Please use the data in archive/individual_stocks_5yr/individual_stocks_5yr/XX.csv.
In each csv file, there are 'date','open','high','low','close','volume','Name' columns.
Please choose one column or multiple columns.
'date' and 'Name' are non-data column, please do not use.
"""

import numpy as np
from mindarmour import ConceptDriftCheckTimeSeries


# input data
DATA_FILE = r'archive/individual_stocks_5yr/individual_stocks_5yr/AEE_data.csv'
data = np.loadtxt(DATA_FILE, str, delimiter=",")
data = data[1:, 2].astype('float64') # choose one column or multiple columns data[1:, 2:5]
# Initialization
concept = ConceptDriftCheckTimeSeries(window_size=100, rolling_window=10,
step=10, threshold_index=1.5, need_label=False)
# drift check
drift_score, threshold, concept_drift_location = concept.concept_check(data)

+ 3
- 1
mindarmour/__init__.py View File

@@ -13,6 +13,7 @@ from .privacy.sup_privacy.sup_ctrl.conctrl import SuppressCtrl
from .privacy.sup_privacy.train.model import SuppressModel
from .privacy.sup_privacy.mask_monitor.masker import SuppressMasker
from .privacy.evaluation.inversion_attack import ImageInversionAttack
from .reliability.concept_drift.concept_drift_check_time_series import ConceptDriftCheckTimeSeries

__all__ = ['Attack',
'BlackModel',
@@ -24,4 +25,5 @@ __all__ = ['Attack',
'SuppressModel',
'SuppressCtrl',
'SuppressMasker',
'ImageInversionAttack']
'ImageInversionAttack',
'ConceptDriftCheckTimeSeries']

+ 0
- 0
mindarmour/reliability/__init__.py View File


+ 92
- 0
mindarmour/reliability/concept_drift/README.md View File

@@ -0,0 +1,92 @@
# Content

## Concept drift Description

In predictive analytics and machine learning, the concept drift means that the statistical properties of the target variable, which the model is trying to predict, change over time in unforeseen ways. This causes problems because the predictions become less accurate as time passes. Usually, concept drift is described as the change of data distribution over time.

## Method

### Model Architecture

The concept drift detection method is based on the ESN (Echo state network). ESN is a type of reservoir computer that uses a recurrent neural network with a sparsely connected hidden layer (with typically 1% connectivity). The connectivity and weights of hidden neurons are fixed and randomly assigned.
For time series concept drift detection

### Detector

For a time series, we select two adjacent time window and compare the features of the two window data to determine whether concept drift has occurred. For feature extraction, we choose to use the ESN network. The input of the ESN network is a certain window data, and the output is also the window data (like an auto-encoder). In this way, the ESN network is equivalent to a feature extractor. Features are represented by model parameters (weights and bias) of the ESN network. Finally, by comparing the difference of model parameters, we can determine whether the data has concept drift. It should be noted that the two windows are constantly sliding forward.

## Dataset

Download dataset https://www.kaggle.com/camnugent/sandp500.

```bash
├── archive
├── all_stocks_5yr.csv
├── getSandP.py
├── merge.sh
├── individual_stocks_5yr
├──__MACOSX
├──individual_stocks_5yr
```

Please use the data in archive/individual_stocks_5yr/individual_stocks_5yr/XX.csv.
In each csv file, there are 'date','open','high','low','close','volume','Name' columns, please choose one column to begin your code. 'date' and 'Name' are non-data column.

## Environment Requirements

- Hardware(CPU/Ascend/GPU)
- Prepare hardware environment with CPU, Ascend or GPU processor.
- Framework
- MindSpore
- For more information, please check the resources below:
- MindSpore Tutorials
- MindSpore Python API

## Quick Start

### Initialization

```python
from mindarmour.reliability.concept_drift.concept_drift_check_time_series import ConceptDriftCheckTimeSeries

concept = ConceptDriftCheckTimeSeries(window_size=100, rolling_window=10, step=10, threshold_index=1.5,
need_label=False)
```

>window_size(int): Size of a concept window, belongs to [10, 1/3*len(input data)]. If the data is periodic, usually window_size equals 2-5 periods, such as, for monthly/weekly data, the data volume of 30/7 days is a period. Default: 100.
rolling_window(int): Smoothing window size, belongs to [1, window_size]. Default:10.
step(int): The jump length of the sliding window, belongs to [1,window_size]. Default:10.
threshold_index(float): The threshold index, (-∞,+∞), Default: 1.5.
need_label(bool): False or True. If need_label=True, concept drift labels are needed. Default: False.

### Data

```python
import numpy as np
file = r'archive/individual_stocks_5yr/individual_stocks_5yr/AAP_data.csv'
data = np.loadtxt(file, str, delimiter=",")
data = data[1:, 2].astype('float64') # here we choose one column or multiple columns data[1:, 2:5].
```

>data(numpy.ndarray): Input data. The shape of data could be (n,1) or (n,m).

### Drift check

```python
drift_score, threshold, concept_drift_location = concept.concept_check(data)
```

>drift_score(numpy.ndarray): The concept drift score of the example series.
threshold(float): The threshold to judge concept drift.
concept_drift_location(list): The location of the concept drift.

## Script Description

```python
├── mindarmour
├── reliability # descriptions about GhostNet # shell script for evaluation with CPU, GPU or Ascend
├──concept_drift
├──concept_drift.py
├──readme.md
```


+ 0
- 0
mindarmour/reliability/concept_drift/__init__.py View File


+ 404
- 0
mindarmour/reliability/concept_drift/concept_drift_check_time_series.py View File

@@ -0,0 +1,404 @@
# -*- coding: utf-8 -*-
# Copyright 2021 Huawei Technologies Co., Ltd
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

"""
Concpt drift module
"""

from itertools import groupby
import numpy as np
import matplotlib.pyplot as plt
from mindarmour.utils._check_param import _check_array_not_empty
from mindarmour.utils._check_param import check_param_type, check_param_in_range


class ConceptDriftCheckTimeSeries:
"""
Concept is used for example series distribution change detection.

Args:
window_size(int): Size of a concept window, belongs to [10, 1/3*len(input data)].
If the data is periodic, usually window_size equals 2-5 periods, such as,
for monthly/weekly data, the data volume of 30/7 days is a period. Default: 100.
rolling_window(int): Smoothing window size, belongs to [1, window_size]. Default:10.
step(int): The jump length of the sliding window, belongs to [1, window_size]. Default:10.
threshold_index(float): The threshold index, (-∞, +∞), Default: 1.5.
need_label(bool): False or True. If need_label=True, concept drift labels are needed.
Default: False.

Examples:
>>> concept = ConceptDriftCheckTimeSeries(window_size=100, rolling_window=10,
>>> step=10, threshold_index=1.5, need_label=False)
>>> data_example = np.array([np.random.rand(1000),
>>> np.random.rand(1000),np.random.rand(1000)]).T
>>> score, threshold, concept_drift_location = concept.concept_check(data_example)
"""

def __init__(self, window_size=100, rolling_window=10,
step=10, threshold_index=1.5, need_label=False):
self.window_size = check_param_type('window_size', window_size, int)
self.rolling_window = check_param_type('rolling_window', rolling_window, int)
self.rolling_window = check_param_in_range('rolling_window',
rolling_window, 1, window_size)
self.step = check_param_type('step', step, int)
self.step = check_param_in_range('step', step, 1, window_size)
self.threshold_index = check_param_type('threshold_index', threshold_index, float)
self.need_label = check_param_type('need_label', need_label, bool)
self._in_size = window_size
self._out_size = window_size
self._res_size = int(0.1*window_size)

def _reservoir_model_feature(self, window_data):
"""
Extract example features in reservoir model.

Args:
window_data(numpy.ndarray): The input data (in one window).

Returns:
w_out(numpy.ndarray): The output weight of reservoir model.
x_state(numpy.ndarray): The state of the reservoir model in the latent space.

Examples:
>>> input_data = np.random.rand(100)
>>> w, x = ConceptDriftCheckTimeSeries._reservoir_model_feature(window_data)
"""
# Initialize weights
res_size = self._res_size
x_state = _w_generate(res_size, len(window_data), window_data)
x_state_t = x_state.T
# Data reshape
data_channel = None
if window_data.ndim == 2:
data_channel = window_data.shape[1]
if window_data.ndim == 1:
data_channel = 1
y_t = window_data.reshape(len(window_data), data_channel)
reg = 1e-8
# Calculate w_out
w_out = np.dot(np.dot(y_t, x_state_t),
np.linalg.inv(np.dot(x_state, x_state_t) + reg*np.eye(res_size)))
return w_out, x_state

def _concept_distance(self, data_x, data_y):
"""
Calculate the distance of two example blocks.

Args:
data_x(numpy.ndarray): Data x.
data_y(numpy.ndarray): Data y.

Returns:
distance_score_mean(float): Distance between data_x and data_y.

Examples:
>>> x = np.random.rand(100)
>>> y = np.random.rand(100)
>>> score = ConceptDriftCheckTimeSeries._concept_distance(x, y)
"""
# Feature extraction
feature_x = self._reservoir_model_feature(data_x)
feature_y = self._reservoir_model_feature(data_y)
# Calculate distance
distance_wx = sum(abs(np.dot(feature_x[0], feature_x[1])
- np.dot(feature_y[0], feature_y[1])))/len(data_x)
statistic_feature = abs(data_x.mean() - data_y.mean()).mean()
distance_score = (distance_wx + statistic_feature) / (1 + distance_wx + statistic_feature)
distance_score_mean = distance_score.mean()
return distance_score_mean

def _data_process(self, data):
"""
Data processing.

Args:
data(numpy.ndarray): Input data.

Returns:
smooth_data(numpy.ndarray): Data after smoothing.

Examples:
>>> data_example = np.random.rand(100)
>>> data_example = ConceptDriftCheckTimeSeries._data_process(data_example)
"""
temp = []
data_channel = None
if data.ndim == 2:
data_channel = data.shape[1]
if data.ndim == 1:
data_channel = 1
data = data.reshape(len(data), data_channel)
# Moving average
for i in range(data_channel):
data_av = np.convolve(data[:, i],
np.ones((self.rolling_window,)) / self.rolling_window, 'valid')
data_av = np.append(data_av, np.ones(self.rolling_window - 1)*data_av[-1])
data_av = (data_av - data_av.min()) / (data_av.max() - data_av.min())
temp.append(data_av)
smooth_data = np.array(temp).T
return smooth_data

def concept_check(self, data):
"""
Find concept drift locations in a example series.

Args:
data(numpy.ndarray): Input data. The shape of data could be (n,1) or (n,m).
Note that each column (m columns) is one data series.

Returns:
drift_score(numpy.ndarray): The concept drift score of the example series.
threshold(float): The threshold to judge concept drift.
concept_drift_location(list): The location of the concept drift.

Examples:
>>> concept = ConceptDriftCheckTimeSeries(window_size=100, rolling_window=10,
>>> step=10, threshold_index=1.5, need_label=False)
>>> data_example = np.array([np.random.rand(1000),
>>> np.random.rand(1000), np.random.rand(1000)]).T
>>> score, drift_threshold, point = concept.concept_check(data_example)
"""
# data check
data = _check_array_not_empty('data', data)
data = check_param_type('data', data, np.ndarray)
check_param_in_range('window_size', self.window_size, 10, int((1 / 3)*len(data)))
original_data = data
data = self._data_process(data)
# calculate drift score
drift_score = np.zeros(len(data))
step_size = self.step
for i in range(0, len(data) - 2*self.window_size, step_size):
data_x = data[i: i + self.window_size]
data_y = data[i + self.window_size:i + 2*self.window_size]
drift_score[i + self.window_size] = self._concept_distance(data_x, data_y)
threshold = _cal_threshold(drift_score, self.threshold_index)
# original label
label, label_location = _original_label(data, threshold, drift_score,
self.window_size, step_size)
# label continue
label_continue = _label_continue_process(label)
# find drift blocks
concept_drift_location, drift_point = _drift_blocks(drift_score,
label_continue, label_location)
# show result
_plot_show(original_data, threshold, concept_drift_location,
drift_point, drift_score)
return drift_score, threshold, concept_drift_location


def _plot_show(original_data, threshold, concept_location, drift_point, drift_score):
"""
To show the result.

Args:
original_data(numpy.ndarray): The input data.
threshold(float): The concept drift threshold.
concept_location(list): The concept drift locations(x-axis).
drift_point(list): The precise drift location of a drift.
drift_score(numpy.ndarray): The drift score of input data.
"""
plt.figure(figsize=(20, 8))
plt.subplot(2, 1, 1)
# Plot input data and drift points
plt.plot(original_data, label="data")
plt.title('concept drift check, threshold=' + str(threshold))
plt.scatter(concept_location, np.ones(len(concept_location)),
marker='*', s=200, color="b", label="concept drift occurred")
for _, i in enumerate(drift_point):
plt.axvline(x=i, color='r', linestyle='--')
plt.legend()
plt.subplot(2, 1, 2)
# Plot drift score
plt.plot(drift_score, label="drift_score")
plt.axhline(y=threshold, color='r', linestyle='--', label="threshold")
plt.legend()
plt.show()


def _original_label(original_data, threshold, drift_score, window_size, step_size):
"""
To obtain a original drift label of time series.

Args:
original_data(numpy.ndarray): The input data.
threshold(float): The drift threshold.
drift_score(numpy.ndarray): The drift score of the input data.
window_size(int): Size of a concept window.
Usually 3 periods of the input data if it is periodic.
step_size(int): The jump length of the sliding window.

Returns:
label(list): The drift label of input data.
0 means no drift, and 1 means drift happens.
label_location(list): The locations of drifts(x-axis).
"""
label = []
label_location = []
# Label: label=0, no drifts; label=1, drift happens.
for i in range(0, len(original_data) - 2*window_size, step_size):
label_location.append(i + window_size)
if drift_score[i + window_size] >= threshold:
label.append(1)
else:
label.append(0)
return label, label_location


def _label_continue_process(label):
"""
To obtain a continual drift label of time series.

Args:
label(list): The original drift label.

Returns:
label_continue(numpy.ndarray): The continual drift label.
The drift may happen occasionally, we hope to avoid
frequent alarms, so label continue process is necessary.
"""
if label[-1] == 1 and label[-2] == 0 and label[-3] == 0 and label[-4] == 0:
label[-1] = 0
if label[0] == 1 and label[1] == 0 and label[2] == 0 and label[3] == 0:
label[0] = 0
label_continue = np.array(label)
# Label continue process
for i in range(1, len(label) - 1):
if label[i - 1] == 0 and label[i + 1] == 0:
label_continue[i - 1:i + 1] = 0
return label_continue


def _find_loc(label_location):
return label_location[1] - label_location[0]


def _continue_block(location):
"""
Find continue blocks of concept drift.

Args:
location(numpy.ndarray): The locations of concept drift.

Returns:
area(list): Continue blocks of concept drift.
"""
area = []
for _, loc in groupby(enumerate(location), _find_loc):
l_1 = [j for i, j in loc]
area.append(l_1)
return area


def _drift_blocks(drift_score, label_continue, label_location):
"""
Find the concept drift areas.

Args:
drift_score(numpy.ndarray): The drift score of the data series.
label_continue(numpy.ndarray): The concept drift continual label.
label_location(numpy.ndarray): The locations of concept drift(x-axis).

Returns:
concept_location(list): The concept drift locations(x-axis) after continual blocks finding.
drift_point(list): Return a precise beginning location of a drift.
"""
# Find drift blocks
area = _continue_block(np.where(label_continue == 1)[0])
label_continue = np.array(label_continue)
label_location = np.array(label_location)
label_continue = label_continue[label_continue == 1]
concept_location = []
drift_point = []
# Find drift points
for _, lo_ in enumerate(area):
location = label_location[lo_]
concept_location.extend(location)
if label_continue.size > 0:
drift_point.append(location[np.where(drift_score[location]
== np.max(drift_score[location]))[0]])
else:
drift_point.append(None)
return concept_location, drift_point


def _w_generate(res_size, in_size, input_data):
"""
Randomly generate weights of the reservoir model.

Args:
res_size(int): The number of reservoir nodes.
in_size(int): The input size of reservoir model.
input_data(numpy.ndarray): Input data.

Returns:
x_state(numpy.ndarray): The state of reservoir.
"""
# Weight generates randomly
np.random.seed(42)
w_in = np.random.rand(res_size, in_size) - 0.5
w_0 = np.random.rand(res_size, res_size) - 0.5
w_0 *= 0.8
a_speed = 0.3
# Data reshape
data_channel = None
if input_data.ndim == 2:
data_channel = input_data.shape[1]
if input_data.ndim == 1:
data_channel = 1
# Reservoir state
x_state = np.zeros((res_size, data_channel))
u_input = input_data.reshape(len(input_data), data_channel)
for _ in range(50):
x_state = (1 - a_speed)*x_state + \
a_speed*np.tanh(np.dot(w_in, u_input) + np.dot(w_0, x_state))
return x_state


def _cal_distance(matrix1, matrix2):
"""
Calculate distance between two matrix.

Args:
matrix1(numpy.ndarray): Input array.
matrix2(numpy.ndarray): Input array.

Returns:
distance(numpy.ndarray): Distance between two arrays.
"""
w_mean_x = np.mean(matrix1, axis=0)
w_mean_y = np.mean(matrix2, axis=0)
distance = sum(abs(w_mean_x - w_mean_y))
return distance


def _cal_threshold(distance, threshold_index):
"""
Calculate the threshold of concept drift.

Args:
distance(numpy.ndarray): The distance between two data series.
threshold_index(float): Threshold adjusted index, [-∞, +∞].

Returns:
threshold(float): [0, 1].
"""
distance = distance[distance > 0]
# Threshold calculation
if distance.size > 0:
q_1 = np.percentile(distance, 25)
q_3 = np.percentile(distance, 75)
q_diff = q_3 - q_1
threshold = np.clip(0.1 + threshold_index*q_diff, 0, 1)
else:
threshold = 1
return threshold

+ 52
- 0
tests/ut/python/reliability/concept_drift/test_concept_drift_time_series.py View File

@@ -0,0 +1,52 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Concept drift test.
"""


import logging
import pytest
import numpy as np
from mindarmour import ConceptDriftCheckTimeSeries
from mindarmour.utils.logger import LogUtil

LOGGER = LogUtil.get_instance()
TAG = 'Concept_Test'


@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_cp():
"""
Concept drift test.
"""
# create data
data = 5*np.random.rand(1000)
data[200: 800] = 50*np.random.rand(600)
# initialization
concept = ConceptDriftCheckTimeSeries(window_size=100, rolling_window=10,
step=10, threshold_index=1.5, need_label=False)
# drift check
drift_score, threshold, concept_drift_location = concept.concept_check(data)
LOGGER.set_level(logging.DEBUG)
LOGGER.debug(TAG, '--start concept drift test--')
LOGGER.debug(threshold, '--concept drift threshold--')
LOGGER.debug(concept_drift_location, '--concept drift location--')
LOGGER.debug(TAG, '--end concept drift test--')
assert np.any(drift_score >= 0.0)

Loading…
Cancel
Save