|
|
@@ -66,7 +66,6 @@ def test_dp_monitor(): |
|
|
|
LOGGER.info(TAG, "============== Starting Training ==============") |
|
|
|
ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches), |
|
|
|
["data", "label"]) |
|
|
|
ds1.set_dataset_size(batch_size * batches) |
|
|
|
model.train(epochs, ds1, callbacks=[rdp], dataset_sink_mode=False) |
|
|
|
|
|
|
|
|
|
|
@@ -95,7 +94,6 @@ def test_dp_monitor_gpu(): |
|
|
|
LOGGER.info(TAG, "============== Starting Training ==============") |
|
|
|
ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches), |
|
|
|
["data", "label"]) |
|
|
|
ds1.set_dataset_size(batch_size * batches) |
|
|
|
model.train(epochs, ds1, callbacks=[rdp], dataset_sink_mode=False) |
|
|
|
|
|
|
|
|
|
|
@@ -124,7 +122,6 @@ def test_dp_monitor_cpu(): |
|
|
|
LOGGER.info(TAG, "============== Starting Training ==============") |
|
|
|
ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches), |
|
|
|
["data", "label"]) |
|
|
|
ds1.set_dataset_size(batch_size * batches) |
|
|
|
model.train(epochs, ds1, callbacks=[rdp], dataset_sink_mode=False) |
|
|
|
|
|
|
|
|
|
|
@@ -154,7 +151,6 @@ def test_dp_monitor_zcdp(): |
|
|
|
LOGGER.info(TAG, "============== Starting Training ==============") |
|
|
|
ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches), |
|
|
|
["data", "label"]) |
|
|
|
ds1.set_dataset_size(batch_size * batches) |
|
|
|
model.train(epochs, ds1, callbacks=[zcdp], dataset_sink_mode=False) |
|
|
|
|
|
|
|
|
|
|
@@ -183,7 +179,6 @@ def test_dp_monitor_zcdp_gpu(): |
|
|
|
LOGGER.info(TAG, "============== Starting Training ==============") |
|
|
|
ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches), |
|
|
|
["data", "label"]) |
|
|
|
ds1.set_dataset_size(batch_size * batches) |
|
|
|
model.train(epochs, ds1, callbacks=[zcdp], dataset_sink_mode=False) |
|
|
|
|
|
|
|
|
|
|
@@ -212,5 +207,4 @@ def test_dp_monitor_zcdp_cpu(): |
|
|
|
LOGGER.info(TAG, "============== Starting Training ==============") |
|
|
|
ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches), |
|
|
|
["data", "label"]) |
|
|
|
ds1.set_dataset_size(batch_size * batches) |
|
|
|
model.train(epochs, ds1, callbacks=[zcdp], dataset_sink_mode=False) |