@@ -224,7 +224,7 @@ class ResidualBlockUsing(nn.Cell): | |||
self.bn_down_sample = self.bn_down_sample.set_train() | |||
if not weights_update: | |||
self.conv_down_sample.weight.requires_grad = False | |||
self.add = P.TensorAdd() | |||
self.add = P.Add() | |||
def construct(self, x): | |||
identity = x | |||
@@ -64,7 +64,7 @@ class ResidualBlock(nn.Cell): | |||
out_chls = out_channels//2 | |||
self.conv1 = conv_block(in_channels, out_chls, kernel_size=1, stride=1) | |||
self.conv2 = conv_block(out_chls, out_channels, kernel_size=3, stride=1) | |||
self.add = P.TensorAdd() | |||
self.add = P.Add() | |||
def construct(self, x): | |||
identity = x | |||
@@ -22,7 +22,7 @@ from mindspore import context | |||
from mindspore import nn | |||
from mindspore.nn import Cell | |||
from mindspore.nn import SoftmaxCrossEntropyWithLogits | |||
from mindspore.ops.operations import TensorAdd | |||
from mindspore.ops.operations import Add | |||
from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
from scipy.special import softmax | |||
@@ -58,7 +58,7 @@ class EncoderNet(Cell): | |||
def __init__(self, encode_dim): | |||
super(EncoderNet, self).__init__() | |||
self._encode_dim = encode_dim | |||
self.add = TensorAdd() | |||
self.add = Add() | |||
def construct(self, inputs): | |||
""" | |||
@@ -18,7 +18,7 @@ from mindspore import Model | |||
from mindspore import Tensor | |||
from mindspore import context | |||
from mindspore.nn import Cell | |||
from mindspore.ops.operations import TensorAdd | |||
from mindspore.ops.operations import Add | |||
from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
from mindarmour import BlackModel | |||
@@ -72,7 +72,7 @@ class EncoderNet(Cell): | |||
def __init__(self, encode_dim): | |||
super(EncoderNet, self).__init__() | |||
self._encode_dim = encode_dim | |||
self.add = TensorAdd() | |||
self.add = Add() | |||
def construct(self, inputs): | |||
""" | |||
@@ -325,7 +325,7 @@ class _MechanismsParamsUpdater(Cell): | |||
self._init_noise_multiplier = init_noise_multiplier | |||
self._div = P.Div() | |||
self._add = P.TensorAdd() | |||
self._add = P.Add() | |||
self._assign = P.Assign() | |||
self._sub = P.Sub() | |||
self._one = Tensor(1, mstype.float32) | |||
@@ -414,7 +414,7 @@ class AdaClippingWithGaussianRandom(Cell): | |||
mstype.float32) | |||
self._zero = Tensor(0, mstype.float32) | |||
self._add = P.TensorAdd() | |||
self._add = P.Add() | |||
self._sub = P.Sub() | |||
self._mul = P.Mul() | |||
self._exp = P.Exp() | |||
@@ -42,7 +42,7 @@ def tensor_grad_scale(scale, grad): | |||
class _TupleAdd(nn.Cell): | |||
def __init__(self): | |||
super(_TupleAdd, self).__init__() | |||
self.add = P.TensorAdd() | |||
self.add = P.Add() | |||
self.hyper_map = C.HyperMap() | |||
def construct(self, input1, input2): | |||
@@ -323,7 +323,7 @@ class _ClipGradients(nn.Cell): | |||
class _TupleAdd(nn.Cell): | |||
def __init__(self): | |||
super(_TupleAdd, self).__init__() | |||
self.add = P.TensorAdd() | |||
self.add = P.Add() | |||
self.hyper_map = C.HyperMap() | |||
def construct(self, input1, input2): | |||
@@ -422,7 +422,7 @@ class _TrainOneStepWithLossScaleCell(Cell): | |||
self._clip_by_global_norm = _ClipGradients() | |||
self._noise_mech = noise_mech | |||
self._clip_mech = clip_mech | |||
self._add = P.TensorAdd() | |||
self._add = P.Add() | |||
self._norm = nn.Norm() | |||
self._tuple_add = _TupleAdd() | |||
self._hyper_map = C.HyperMap() | |||
@@ -508,7 +508,7 @@ class _TrainOneStepWithLossScaleCell(Cell): | |||
GRADIENT_CLIP_TYPE, | |||
self._norm_bound) | |||
grads = self._tuple_add(grads, record_grad) | |||
total_loss = P.TensorAdd()(total_loss, loss) | |||
total_loss = P.Add()(total_loss, loss) | |||
loss = P.Div()(total_loss, self._micro_float) | |||
beta = self._div(beta, self._micro_batches) | |||
@@ -626,7 +626,7 @@ class _TrainOneStepCell(Cell): | |||
self._noise_mech = noise_mech | |||
self._clip_mech = clip_mech | |||
self._tuple_add = _TupleAdd() | |||
self._add = P.TensorAdd() | |||
self._add = P.Add() | |||
self._norm = nn.Norm() | |||
self._hyper_map = C.HyperMap() | |||
self._zero = Tensor(0, mstype.float32) | |||
@@ -698,7 +698,7 @@ class _TrainOneStepCell(Cell): | |||
GRADIENT_CLIP_TYPE, | |||
self._norm_bound) | |||
grads = self._tuple_add(grads, record_grad) | |||
total_loss = P.TensorAdd()(total_loss, loss) | |||
total_loss = P.Add()(total_loss, loss) | |||
loss = self._div(total_loss, self._micro_float) | |||
if self._noise_mech is not None: | |||
@@ -121,7 +121,7 @@ class ResidualBlock(nn.Cell): | |||
self.bn3 = bn_with_initialize_last(out_channels) | |||
self.relu = P.ReLU() | |||
self.add = P.TensorAdd() | |||
self.add = P.Add() | |||
def construct(self, x): | |||
identity = x | |||
@@ -168,7 +168,7 @@ class ResidualBlockWithDown(nn.Cell): | |||
self.conv_down_sample = conv1x1(in_channels, out_channels, stride=stride, padding=0) | |||
self.bn_down_sample = bn_with_initialize(out_channels) | |||
self.add = P.TensorAdd() | |||
self.add = P.Add() | |||
def construct(self, x): | |||
identity = x | |||
@@ -20,7 +20,7 @@ import pytest | |||
from mindspore.nn import Cell | |||
from mindspore import Model | |||
from mindspore import context | |||
from mindspore.ops.operations import TensorAdd | |||
from mindspore.ops.operations import Add | |||
from mindarmour.adv_robustness.detectors import SimilarityDetector | |||
@@ -35,7 +35,7 @@ class EncoderNet(Cell): | |||
def __init__(self, encode_dim): | |||
super(EncoderNet, self).__init__() | |||
self._encode_dim = encode_dim | |||
self.add = TensorAdd() | |||
self.add = Add() | |||
def construct(self, inputs): | |||
""" | |||
@@ -18,7 +18,7 @@ import numpy as np | |||
import pytest | |||
from mindspore.nn import Cell | |||
from mindspore.ops.operations import TensorAdd | |||
from mindspore.ops.operations import Add | |||
from mindspore.train.model import Model | |||
from mindspore import context | |||
@@ -35,7 +35,7 @@ class Net(Cell): | |||
""" | |||
def __init__(self): | |||
super(Net, self).__init__() | |||
self.add = TensorAdd() | |||
self.add = Add() | |||
def construct(self, inputs): | |||
""" | |||
@@ -53,7 +53,7 @@ class AutoNet(Cell): | |||
""" | |||
def __init__(self): | |||
super(AutoNet, self).__init__() | |||
self.add = TensorAdd() | |||
self.add = Add() | |||
def construct(self, inputs): | |||
""" | |||
@@ -19,7 +19,7 @@ import pytest | |||
import mindspore.ops.operations as P | |||
from mindspore.nn import Cell | |||
from mindspore.ops.operations import TensorAdd | |||
from mindspore.ops.operations import Add | |||
from mindspore import Model | |||
from mindspore import context | |||
@@ -36,7 +36,7 @@ class Net(Cell): | |||
def __init__(self): | |||
super(Net, self).__init__() | |||
self.add = TensorAdd() | |||
self.add = Add() | |||
def construct(self, inputs): | |||
""" | |||
@@ -20,7 +20,7 @@ import pytest | |||
from mindspore.nn import Cell | |||
from mindspore import Model | |||
from mindspore import context | |||
from mindspore.ops.operations import TensorAdd | |||
from mindspore.ops.operations import Add | |||
from mindarmour.adv_robustness.detectors import RegionBasedDetector | |||
@@ -34,7 +34,7 @@ class Net(Cell): | |||
""" | |||
def __init__(self): | |||
super(Net, self).__init__() | |||
self.add = TensorAdd() | |||
self.add = Add() | |||
def construct(self, inputs): | |||
""" | |||
@@ -29,8 +29,10 @@ from mindarmour.privacy.diff_privacy import DPOptimizerClassFactory | |||
from ut.python.utils.mock_net import Net | |||
def dataset_generator(batch_size, batches): | |||
def dataset_generator(): | |||
"""mock training data.""" | |||
batch_size = 32 | |||
batches = 128 | |||
data = np.random.random((batches*batch_size, 1, 32, 32)).astype( | |||
np.float32) | |||
label = np.random.randint(0, 10, batches*batch_size).astype(np.int32) | |||
@@ -49,8 +51,6 @@ def test_dp_model_with_pynative_mode(): | |||
norm_bound = 1.0 | |||
initial_noise_multiplier = 0.01 | |||
network = Net() | |||
batch_size = 32 | |||
batches = 128 | |||
epochs = 1 | |||
micro_batches = 2 | |||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True) | |||
@@ -73,7 +73,7 @@ def test_dp_model_with_pynative_mode(): | |||
loss_fn=loss, | |||
optimizer=net_opt, | |||
metrics=None) | |||
ms_ds = ds.GeneratorDataset(dataset_generator(batch_size, batches), | |||
ms_ds = ds.GeneratorDataset(dataset_generator, | |||
['data', 'label']) | |||
model.train(epochs, ms_ds, dataset_sink_mode=False) | |||
@@ -88,8 +88,6 @@ def test_dp_model_with_graph_mode(): | |||
norm_bound = 1.0 | |||
initial_noise_multiplier = 0.01 | |||
network = Net() | |||
batch_size = 32 | |||
batches = 128 | |||
epochs = 1 | |||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True) | |||
noise_mech = NoiseMechanismsFactory().create('Gaussian', | |||
@@ -110,7 +108,7 @@ def test_dp_model_with_graph_mode(): | |||
loss_fn=loss, | |||
optimizer=net_opt, | |||
metrics=None) | |||
ms_ds = ds.GeneratorDataset(dataset_generator(batch_size, batches), | |||
ms_ds = ds.GeneratorDataset(dataset_generator, | |||
['data', 'label']) | |||
model.train(epochs, ms_ds, dataset_sink_mode=False) | |||
@@ -125,8 +123,6 @@ def test_dp_model_with_graph_mode_ada_gaussian(): | |||
norm_bound = 1.0 | |||
initial_noise_multiplier = 0.01 | |||
network = Net() | |||
batch_size = 32 | |||
batches = 128 | |||
epochs = 1 | |||
alpha = 0.8 | |||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True) | |||
@@ -146,6 +142,6 @@ def test_dp_model_with_graph_mode_ada_gaussian(): | |||
loss_fn=loss, | |||
optimizer=net_opt, | |||
metrics=None) | |||
ms_ds = ds.GeneratorDataset(dataset_generator(batch_size, batches), | |||
ms_ds = ds.GeneratorDataset(dataset_generator, | |||
['data', 'label']) | |||
model.train(epochs, ms_ds, dataset_sink_mode=False) |
@@ -31,7 +31,9 @@ LOGGER = LogUtil.get_instance() | |||
TAG = 'DP-Monitor Test' | |||
def dataset_generator(batch_size, batches): | |||
def dataset_generator(): | |||
batch_size = 16 | |||
batches = 128 | |||
data = np.random.random((batches * batch_size, 1, 32, 32)).astype( | |||
np.float32) | |||
label = np.random.randint(0, 10, batches * batch_size).astype(np.int32) | |||
@@ -48,7 +50,6 @@ def dataset_generator(batch_size, batches): | |||
def test_dp_monitor(): | |||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
batch_size = 16 | |||
batches = 128 | |||
epochs = 1 | |||
rdp = PrivacyMonitorFactory.create(policy='rdp', num_samples=60000, | |||
batch_size=batch_size, | |||
@@ -64,7 +65,7 @@ def test_dp_monitor(): | |||
model = Model(network, net_loss, net_opt) | |||
LOGGER.info(TAG, "============== Starting Training ==============") | |||
ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches), | |||
ds1 = ds.GeneratorDataset(dataset_generator, | |||
["data", "label"]) | |||
model.train(epochs, ds1, callbacks=[rdp], dataset_sink_mode=False) | |||
@@ -76,7 +77,6 @@ def test_dp_monitor(): | |||
def test_dp_monitor_gpu(): | |||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
batch_size = 16 | |||
batches = 128 | |||
epochs = 1 | |||
rdp = PrivacyMonitorFactory.create(policy='rdp', num_samples=60000, | |||
batch_size=batch_size, | |||
@@ -92,7 +92,7 @@ def test_dp_monitor_gpu(): | |||
model = Model(network, net_loss, net_opt) | |||
LOGGER.info(TAG, "============== Starting Training ==============") | |||
ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches), | |||
ds1 = ds.GeneratorDataset(dataset_generator, | |||
["data", "label"]) | |||
model.train(epochs, ds1, callbacks=[rdp], dataset_sink_mode=False) | |||
@@ -104,7 +104,6 @@ def test_dp_monitor_gpu(): | |||
def test_dp_monitor_cpu(): | |||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||
batch_size = 16 | |||
batches = 128 | |||
epochs = 1 | |||
rdp = PrivacyMonitorFactory.create(policy='rdp', num_samples=60000, | |||
batch_size=batch_size, | |||
@@ -120,7 +119,7 @@ def test_dp_monitor_cpu(): | |||
model = Model(network, net_loss, net_opt) | |||
LOGGER.info(TAG, "============== Starting Training ==============") | |||
ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches), | |||
ds1 = ds.GeneratorDataset(dataset_generator, | |||
["data", "label"]) | |||
model.train(epochs, ds1, callbacks=[rdp], dataset_sink_mode=False) | |||
@@ -133,7 +132,6 @@ def test_dp_monitor_cpu(): | |||
def test_dp_monitor_zcdp(): | |||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
batch_size = 16 | |||
batches = 128 | |||
epochs = 1 | |||
zcdp = PrivacyMonitorFactory.create(policy='zcdp', num_samples=60000, | |||
batch_size=batch_size, | |||
@@ -149,7 +147,7 @@ def test_dp_monitor_zcdp(): | |||
model = Model(network, net_loss, net_opt) | |||
LOGGER.info(TAG, "============== Starting Training ==============") | |||
ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches), | |||
ds1 = ds.GeneratorDataset(dataset_generator, | |||
["data", "label"]) | |||
model.train(epochs, ds1, callbacks=[zcdp], dataset_sink_mode=False) | |||
@@ -161,7 +159,6 @@ def test_dp_monitor_zcdp(): | |||
def test_dp_monitor_zcdp_gpu(): | |||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
batch_size = 16 | |||
batches = 128 | |||
epochs = 1 | |||
zcdp = PrivacyMonitorFactory.create(policy='zcdp', num_samples=60000, | |||
batch_size=batch_size, | |||
@@ -177,7 +174,7 @@ def test_dp_monitor_zcdp_gpu(): | |||
model = Model(network, net_loss, net_opt) | |||
LOGGER.info(TAG, "============== Starting Training ==============") | |||
ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches), | |||
ds1 = ds.GeneratorDataset(dataset_generator, | |||
["data", "label"]) | |||
model.train(epochs, ds1, callbacks=[zcdp], dataset_sink_mode=False) | |||
@@ -189,7 +186,6 @@ def test_dp_monitor_zcdp_gpu(): | |||
def test_dp_monitor_zcdp_cpu(): | |||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||
batch_size = 16 | |||
batches = 128 | |||
epochs = 1 | |||
zcdp = PrivacyMonitorFactory.create(policy='zcdp', num_samples=60000, | |||
batch_size=batch_size, | |||
@@ -205,6 +201,6 @@ def test_dp_monitor_zcdp_cpu(): | |||
model = Model(network, net_loss, net_opt) | |||
LOGGER.info(TAG, "============== Starting Training ==============") | |||
ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches), | |||
ds1 = ds.GeneratorDataset(dataset_generator, | |||
["data", "label"]) | |||
model.train(epochs, ds1, callbacks=[zcdp], dataset_sink_mode=False) |
@@ -31,8 +31,10 @@ from ut.python.utils.mock_net import Net | |||
context.set_context(mode=context.GRAPH_MODE) | |||
def dataset_generator(batch_size, batches): | |||
def dataset_generator(): | |||
"""mock training data.""" | |||
batch_size = 16 | |||
batches = 1 | |||
data = np.random.randn(batches*batch_size, 1, 32, 32).astype( | |||
np.float32) | |||
label = np.random.randint(0, 10, batches*batch_size).astype(np.int32) | |||
@@ -74,11 +76,9 @@ def test_membership_inference_object_train(): | |||
"n_neighbors": [3, 5, 7], | |||
} | |||
}] | |||
batch_size = 16 | |||
batches = 1 | |||
ds_train = ds.GeneratorDataset(dataset_generator(batch_size, batches), | |||
ds_train = ds.GeneratorDataset(dataset_generator, | |||
["image", "label"]) | |||
ds_test = ds.GeneratorDataset(dataset_generator(batch_size, batches), | |||
ds_test = ds.GeneratorDataset(dataset_generator, | |||
["image", "label"]) | |||
inference_model.train(ds_train, ds_test, config) | |||
@@ -96,11 +96,9 @@ def test_membership_inference_eval(): | |||
inference_model = MembershipInference(model, -1) | |||
assert isinstance(inference_model, MembershipInference) | |||
batch_size = 16 | |||
batches = 1 | |||
eval_train = ds.GeneratorDataset(dataset_generator(batch_size, batches), | |||
eval_train = ds.GeneratorDataset(dataset_generator, | |||
["image", "label"]) | |||
eval_test = ds.GeneratorDataset(dataset_generator(batch_size, batches), | |||
eval_test = ds.GeneratorDataset(dataset_generator, | |||
["image", "label"]) | |||
metrics = ["precision", "accuracy", "recall"] | |||