|
|
@@ -343,9 +343,9 @@ class _MechanismsParamsUpdater(Cell): |
|
|
|
class AdaClippingWithGaussianRandom(Cell): |
|
|
|
""" |
|
|
|
Adaptive clipping. If `decay_policy` is 'Linear', the update formula is |
|
|
|
$ norm_bound = norm_bound - learning_rate*(beta-target_unclipped_quantile)$. |
|
|
|
`decay_policy` is 'Geometric', the update formula is |
|
|
|
$ norm_bound = norm_bound*exp(-learning_rate*(empirical_fraction-target_unclipped_quantile))$. |
|
|
|
norm_bound = norm_bound - learning_rate*(beta - target_unclipped_quantile). |
|
|
|
If `decay_policy` is 'Geometric', the update formula is norm_bound = |
|
|
|
norm_bound*exp(-learning_rate*(empirical_fraction - target_unclipped_quantile)). |
|
|
|
where beta is the empirical fraction of samples with the value at most |
|
|
|
`target_unclipped_quantile`. |
|
|
|
|
|
|
@@ -355,7 +355,7 @@ class AdaClippingWithGaussianRandom(Cell): |
|
|
|
learning_rate(float): Learning rate of update norm clip. Default: 0.001. |
|
|
|
target_unclipped_quantile(float): Target quantile of norm clip. Default: 0.9. |
|
|
|
fraction_stddev(float): The stddev of Gaussian normal which used in |
|
|
|
empirical_fraction, the formula is $empirical_fraction + N(0, fraction_stddev)$. |
|
|
|
empirical_fraction, the formula is empirical_fraction + N(0, fraction_stddev). |
|
|
|
Default: 0.01. |
|
|
|
seed(int): Original random seed, if seed=0 random normal will use secure |
|
|
|
random number. IF seed!=0 random normal will generate values using |
|
|
|