diff --git a/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/resnet50.py b/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/resnet50.py index 20a2168..cd2a35a 100644 --- a/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/resnet50.py +++ b/examples/model_security/model_attacks/cv/faster_rcnn/src/FasterRcnn/resnet50.py @@ -224,7 +224,7 @@ class ResidualBlockUsing(nn.Cell): self.bn_down_sample = self.bn_down_sample.set_train() if not weights_update: self.conv_down_sample.weight.requires_grad = False - self.add = P.TensorAdd() + self.add = P.Add() def construct(self, x): identity = x diff --git a/examples/model_security/model_attacks/cv/yolov3_darknet53/src/darknet.py b/examples/model_security/model_attacks/cv/yolov3_darknet53/src/darknet.py index 5cbf365..c30d7c4 100644 --- a/examples/model_security/model_attacks/cv/yolov3_darknet53/src/darknet.py +++ b/examples/model_security/model_attacks/cv/yolov3_darknet53/src/darknet.py @@ -64,7 +64,7 @@ class ResidualBlock(nn.Cell): out_chls = out_channels//2 self.conv1 = conv_block(in_channels, out_chls, kernel_size=1, stride=1) self.conv2 = conv_block(out_chls, out_channels, kernel_size=3, stride=1) - self.add = P.TensorAdd() + self.add = P.Add() def construct(self, x): identity = x diff --git a/examples/model_security/model_defenses/mnist_evaluation.py b/examples/model_security/model_defenses/mnist_evaluation.py index b5e54b5..35e53ba 100644 --- a/examples/model_security/model_defenses/mnist_evaluation.py +++ b/examples/model_security/model_defenses/mnist_evaluation.py @@ -22,7 +22,7 @@ from mindspore import context from mindspore import nn from mindspore.nn import Cell from mindspore.nn import SoftmaxCrossEntropyWithLogits -from mindspore.ops.operations import TensorAdd +from mindspore.ops.operations import Add from mindspore.train.serialization import load_checkpoint, load_param_into_net from scipy.special import softmax @@ -58,7 +58,7 @@ class EncoderNet(Cell): def __init__(self, encode_dim): super(EncoderNet, self).__init__() self._encode_dim = encode_dim - self.add = TensorAdd() + self.add = Add() def construct(self, inputs): """ diff --git a/examples/model_security/model_defenses/mnist_similarity_detector.py b/examples/model_security/model_defenses/mnist_similarity_detector.py index 253a20e..b87b4a5 100644 --- a/examples/model_security/model_defenses/mnist_similarity_detector.py +++ b/examples/model_security/model_defenses/mnist_similarity_detector.py @@ -18,7 +18,7 @@ from mindspore import Model from mindspore import Tensor from mindspore import context from mindspore.nn import Cell -from mindspore.ops.operations import TensorAdd +from mindspore.ops.operations import Add from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindarmour import BlackModel @@ -72,7 +72,7 @@ class EncoderNet(Cell): def __init__(self, encode_dim): super(EncoderNet, self).__init__() self._encode_dim = encode_dim - self.add = TensorAdd() + self.add = Add() def construct(self, inputs): """ diff --git a/mindarmour/privacy/diff_privacy/mechanisms/mechanisms.py b/mindarmour/privacy/diff_privacy/mechanisms/mechanisms.py index bfb33cb..9419c87 100644 --- a/mindarmour/privacy/diff_privacy/mechanisms/mechanisms.py +++ b/mindarmour/privacy/diff_privacy/mechanisms/mechanisms.py @@ -142,7 +142,7 @@ class NoiseMechanismsFactory: >>> loss_fn=loss, >>> optimizer=net_opt, >>> metrics=None) - >>> ms_ds = ds.GeneratorDataset(dataset_generator(batch_size, batches), + >>> ms_ds = ds.GeneratorDataset(dataset_generator, >>> ['data', 'label']) >>> model.train(epochs, ms_ds, dataset_sink_mode=False) """ @@ -325,7 +325,7 @@ class _MechanismsParamsUpdater(Cell): self._init_noise_multiplier = init_noise_multiplier self._div = P.Div() - self._add = P.TensorAdd() + self._add = P.Add() self._assign = P.Assign() self._sub = P.Sub() self._one = Tensor(1, mstype.float32) @@ -414,7 +414,7 @@ class AdaClippingWithGaussianRandom(Cell): mstype.float32) self._zero = Tensor(0, mstype.float32) - self._add = P.TensorAdd() + self._add = P.Add() self._sub = P.Sub() self._mul = P.Mul() self._exp = P.Exp() diff --git a/mindarmour/privacy/diff_privacy/optimizer/optimizer.py b/mindarmour/privacy/diff_privacy/optimizer/optimizer.py index c8446c8..238988e 100644 --- a/mindarmour/privacy/diff_privacy/optimizer/optimizer.py +++ b/mindarmour/privacy/diff_privacy/optimizer/optimizer.py @@ -42,7 +42,7 @@ def tensor_grad_scale(scale, grad): class _TupleAdd(nn.Cell): def __init__(self): super(_TupleAdd, self).__init__() - self.add = P.TensorAdd() + self.add = P.Add() self.hyper_map = C.HyperMap() def construct(self, input1, input2): diff --git a/mindarmour/privacy/diff_privacy/train/model.py b/mindarmour/privacy/diff_privacy/train/model.py index 5454e63..5e6d53b 100644 --- a/mindarmour/privacy/diff_privacy/train/model.py +++ b/mindarmour/privacy/diff_privacy/train/model.py @@ -112,7 +112,7 @@ class DPModel(Model): >>> loss_fn=loss, >>> optimizer=net_opt, >>> metrics=None) - >>> ms_ds = ds.GeneratorDataset(dataset_generator(batch_size, batches), + >>> ms_ds = ds.GeneratorDataset(dataset_generator, >>> ['data', 'label']) >>> model.train(epochs, ms_ds, dataset_sink_mode=False) """ @@ -133,7 +133,7 @@ class DPModel(Model): opt_name = opt.__class__.__name__ # Check whether noise_mech and DPOptimizer are both None or not None, if so, raise ValueError. # And check whether noise_mech or DPOtimizer's mech method is adaptive while clip_mech is not None, - # if so, rasie ValuerError too. + # if so, raise ValuerError too. if noise_mech is not None and "DPOptimizer" in opt_name: msg = 'DPOptimizer is not supported while noise_mech is not None' LOGGER.error(TAG, msg) @@ -323,7 +323,7 @@ class _ClipGradients(nn.Cell): class _TupleAdd(nn.Cell): def __init__(self): super(_TupleAdd, self).__init__() - self.add = P.TensorAdd() + self.add = P.Add() self.hyper_map = C.HyperMap() def construct(self, input1, input2): @@ -422,7 +422,7 @@ class _TrainOneStepWithLossScaleCell(Cell): self._clip_by_global_norm = _ClipGradients() self._noise_mech = noise_mech self._clip_mech = clip_mech - self._add = P.TensorAdd() + self._add = P.Add() self._norm = nn.Norm() self._tuple_add = _TupleAdd() self._hyper_map = C.HyperMap() @@ -508,7 +508,7 @@ class _TrainOneStepWithLossScaleCell(Cell): GRADIENT_CLIP_TYPE, self._norm_bound) grads = self._tuple_add(grads, record_grad) - total_loss = P.TensorAdd()(total_loss, loss) + total_loss = P.Add()(total_loss, loss) loss = P.Div()(total_loss, self._micro_float) beta = self._div(beta, self._micro_batches) @@ -626,7 +626,7 @@ class _TrainOneStepCell(Cell): self._noise_mech = noise_mech self._clip_mech = clip_mech self._tuple_add = _TupleAdd() - self._add = P.TensorAdd() + self._add = P.Add() self._norm = nn.Norm() self._hyper_map = C.HyperMap() self._zero = Tensor(0, mstype.float32) @@ -698,7 +698,7 @@ class _TrainOneStepCell(Cell): GRADIENT_CLIP_TYPE, self._norm_bound) grads = self._tuple_add(grads, record_grad) - total_loss = P.TensorAdd()(total_loss, loss) + total_loss = P.Add()(total_loss, loss) loss = self._div(total_loss, self._micro_float) if self._noise_mech is not None: diff --git a/mindarmour/privacy/sup_privacy/train/model.py b/mindarmour/privacy/sup_privacy/train/model.py index 8ac19f3..7b28b5c 100644 --- a/mindarmour/privacy/sup_privacy/train/model.py +++ b/mindarmour/privacy/sup_privacy/train/model.py @@ -206,7 +206,7 @@ class _TupleAdd(nn.Cell): """ def __init__(self): super(_TupleAdd, self).__init__() - self.add = P.TensorAdd() + self.add = P.Add() self.hyper_map = C.HyperMap() def construct(self, input1, input2): diff --git a/tests/__init__.py b/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/tests/st/resnet50/resnet_cifar10.py b/tests/st/resnet50/resnet_cifar10.py index 4328290..472799c 100644 --- a/tests/st/resnet50/resnet_cifar10.py +++ b/tests/st/resnet50/resnet_cifar10.py @@ -121,7 +121,7 @@ class ResidualBlock(nn.Cell): self.bn3 = bn_with_initialize_last(out_channels) self.relu = P.ReLU() - self.add = P.TensorAdd() + self.add = P.Add() def construct(self, x): identity = x @@ -168,7 +168,7 @@ class ResidualBlockWithDown(nn.Cell): self.conv_down_sample = conv1x1(in_channels, out_channels, stride=stride, padding=0) self.bn_down_sample = bn_with_initialize(out_channels) - self.add = P.TensorAdd() + self.add = P.Add() def construct(self, x): identity = x diff --git a/tests/ut/python/adv_robustness/attacks/black/test_hsja.py b/tests/ut/python/adv_robustness/attacks/black/test_hsja.py index ea4eb83..c9e6d24 100644 --- a/tests/ut/python/adv_robustness/attacks/black/test_hsja.py +++ b/tests/ut/python/adv_robustness/attacks/black/test_hsja.py @@ -23,7 +23,7 @@ from mindarmour import BlackModel from mindarmour.adv_robustness.attacks import HopSkipJumpAttack from mindarmour.utils.logger import LogUtil -from ut.python.utils.mock_net import Net +from tests.ut.python.utils.mock_net import Net context.set_context(mode=context.GRAPH_MODE) context.set_context(device_target="Ascend") diff --git a/tests/ut/python/adv_robustness/attacks/black/test_nes.py b/tests/ut/python/adv_robustness/attacks/black/test_nes.py index 93c4905..6f99a01 100644 --- a/tests/ut/python/adv_robustness/attacks/black/test_nes.py +++ b/tests/ut/python/adv_robustness/attacks/black/test_nes.py @@ -23,7 +23,7 @@ from mindarmour import BlackModel from mindarmour.adv_robustness.attacks import NES from mindarmour.utils.logger import LogUtil -from ut.python.utils.mock_net import Net +from tests.ut.python.utils.mock_net import Net context.set_context(mode=context.GRAPH_MODE) context.set_context(device_target="Ascend") diff --git a/tests/ut/python/adv_robustness/attacks/black/test_pointwise_attack.py b/tests/ut/python/adv_robustness/attacks/black/test_pointwise_attack.py index 0de664e..542566b 100644 --- a/tests/ut/python/adv_robustness/attacks/black/test_pointwise_attack.py +++ b/tests/ut/python/adv_robustness/attacks/black/test_pointwise_attack.py @@ -26,7 +26,7 @@ from mindarmour import BlackModel from mindarmour.adv_robustness.attacks import PointWiseAttack from mindarmour.utils.logger import LogUtil -from ut.python.utils.mock_net import Net +from tests.ut.python.utils.mock_net import Net context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") diff --git a/tests/ut/python/adv_robustness/attacks/black/test_pso_attack.py b/tests/ut/python/adv_robustness/attacks/black/test_pso_attack.py index 7a5b5e0..5fa2531 100644 --- a/tests/ut/python/adv_robustness/attacks/black/test_pso_attack.py +++ b/tests/ut/python/adv_robustness/attacks/black/test_pso_attack.py @@ -144,7 +144,7 @@ def test_pso_attack_targeted(): @pytest.mark.level0 -@pytest.mark.platform_x86_gpu_inference +@pytest.mark.platform_x86_gpu_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_pso_attack_gpu(): diff --git a/tests/ut/python/adv_robustness/attacks/test_gradient_method.py b/tests/ut/python/adv_robustness/attacks/test_gradient_method.py index 96f527d..57975c5 100644 --- a/tests/ut/python/adv_robustness/attacks/test_gradient_method.py +++ b/tests/ut/python/adv_robustness/attacks/test_gradient_method.py @@ -133,7 +133,7 @@ def test_fast_gradient_method(): @pytest.mark.level0 -@pytest.mark.platform_x86_gpu_inference +@pytest.mark.platform_x86_gpu_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_fast_gradient_method_gpu(): diff --git a/tests/ut/python/adv_robustness/attacks/test_jsma.py b/tests/ut/python/adv_robustness/attacks/test_jsma.py index 98678dd..61543d3 100644 --- a/tests/ut/python/adv_robustness/attacks/test_jsma.py +++ b/tests/ut/python/adv_robustness/attacks/test_jsma.py @@ -108,7 +108,7 @@ def test_jsma_attack_2(): @pytest.mark.level0 -@pytest.mark.platform_x86_gpu_inference +@pytest.mark.platform_x86_gpu_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_jsma_attack_gpu(): diff --git a/tests/ut/python/adv_robustness/attacks/test_lbfgs.py b/tests/ut/python/adv_robustness/attacks/test_lbfgs.py index 528d5fd..ce303d7 100644 --- a/tests/ut/python/adv_robustness/attacks/test_lbfgs.py +++ b/tests/ut/python/adv_robustness/attacks/test_lbfgs.py @@ -24,7 +24,7 @@ from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindarmour.adv_robustness.attacks import LBFGS from mindarmour.utils.logger import LogUtil -from ut.python.utils.mock_net import Net +from tests.ut.python.utils.mock_net import Net context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") diff --git a/tests/ut/python/adv_robustness/defenses/test_ad.py b/tests/ut/python/adv_robustness/defenses/test_ad.py index 2c0470d..0695548 100644 --- a/tests/ut/python/adv_robustness/defenses/test_ad.py +++ b/tests/ut/python/adv_robustness/defenses/test_ad.py @@ -26,7 +26,7 @@ from mindspore.nn.optim.momentum import Momentum from mindarmour.adv_robustness.defenses import AdversarialDefense from mindarmour.utils.logger import LogUtil -from ut.python.utils.mock_net import Net +from tests.ut.python.utils.mock_net import Net LOGGER = LogUtil.get_instance() TAG = 'Ad_Test' diff --git a/tests/ut/python/adv_robustness/defenses/test_ead.py b/tests/ut/python/adv_robustness/defenses/test_ead.py index e1bd240..be6baf3 100644 --- a/tests/ut/python/adv_robustness/defenses/test_ead.py +++ b/tests/ut/python/adv_robustness/defenses/test_ead.py @@ -28,7 +28,7 @@ from mindarmour.adv_robustness.attacks import \ from mindarmour.adv_robustness.defenses import EnsembleAdversarialDefense from mindarmour.utils.logger import LogUtil -from ut.python.utils.mock_net import Net +from tests.ut.python.utils.mock_net import Net LOGGER = LogUtil.get_instance() TAG = 'Ead_Test' diff --git a/tests/ut/python/adv_robustness/defenses/test_nad.py b/tests/ut/python/adv_robustness/defenses/test_nad.py index 8c0e5e0..137d02e 100644 --- a/tests/ut/python/adv_robustness/defenses/test_nad.py +++ b/tests/ut/python/adv_robustness/defenses/test_nad.py @@ -25,7 +25,7 @@ from mindspore.nn.optim.momentum import Momentum from mindarmour.adv_robustness.defenses import NaturalAdversarialDefense from mindarmour.utils.logger import LogUtil -from ut.python.utils.mock_net import Net +from tests.ut.python.utils.mock_net import Net LOGGER = LogUtil.get_instance() TAG = 'Nad_Test' diff --git a/tests/ut/python/adv_robustness/defenses/test_pad.py b/tests/ut/python/adv_robustness/defenses/test_pad.py index fb4ed3a..fb5efbf 100644 --- a/tests/ut/python/adv_robustness/defenses/test_pad.py +++ b/tests/ut/python/adv_robustness/defenses/test_pad.py @@ -25,7 +25,7 @@ from mindspore.nn.optim.momentum import Momentum from mindarmour.adv_robustness.defenses import ProjectedAdversarialDefense from mindarmour.utils.logger import LogUtil -from ut.python.utils.mock_net import Net +from tests.ut.python.utils.mock_net import Net LOGGER = LogUtil.get_instance() TAG = 'Pad_Test' diff --git a/tests/ut/python/adv_robustness/detectors/black/test_similarity_detector.py b/tests/ut/python/adv_robustness/detectors/black/test_similarity_detector.py index e73630f..0773d68 100644 --- a/tests/ut/python/adv_robustness/detectors/black/test_similarity_detector.py +++ b/tests/ut/python/adv_robustness/detectors/black/test_similarity_detector.py @@ -20,7 +20,7 @@ import pytest from mindspore.nn import Cell from mindspore import Model from mindspore import context -from mindspore.ops.operations import TensorAdd +from mindspore.ops.operations import Add from mindarmour.adv_robustness.detectors import SimilarityDetector @@ -35,7 +35,7 @@ class EncoderNet(Cell): def __init__(self, encode_dim): super(EncoderNet, self).__init__() self._encode_dim = encode_dim - self.add = TensorAdd() + self.add = Add() def construct(self, inputs): """ diff --git a/tests/ut/python/adv_robustness/detectors/test_ensemble_detector.py b/tests/ut/python/adv_robustness/detectors/test_ensemble_detector.py index 084d260..8c0dc22 100644 --- a/tests/ut/python/adv_robustness/detectors/test_ensemble_detector.py +++ b/tests/ut/python/adv_robustness/detectors/test_ensemble_detector.py @@ -18,7 +18,7 @@ import numpy as np import pytest from mindspore.nn import Cell -from mindspore.ops.operations import TensorAdd +from mindspore.ops.operations import Add from mindspore.train.model import Model from mindspore import context @@ -35,7 +35,7 @@ class Net(Cell): """ def __init__(self): super(Net, self).__init__() - self.add = TensorAdd() + self.add = Add() def construct(self, inputs): """ @@ -53,7 +53,7 @@ class AutoNet(Cell): """ def __init__(self): super(AutoNet, self).__init__() - self.add = TensorAdd() + self.add = Add() def construct(self, inputs): """ diff --git a/tests/ut/python/adv_robustness/detectors/test_mag_net.py b/tests/ut/python/adv_robustness/detectors/test_mag_net.py index e52708b..bcaa341 100644 --- a/tests/ut/python/adv_robustness/detectors/test_mag_net.py +++ b/tests/ut/python/adv_robustness/detectors/test_mag_net.py @@ -19,7 +19,7 @@ import pytest import mindspore.ops.operations as P from mindspore.nn import Cell -from mindspore.ops.operations import TensorAdd +from mindspore.ops.operations import Add from mindspore import Model from mindspore import context @@ -36,7 +36,7 @@ class Net(Cell): def __init__(self): super(Net, self).__init__() - self.add = TensorAdd() + self.add = Add() def construct(self, inputs): """ diff --git a/tests/ut/python/adv_robustness/detectors/test_region_based_detector.py b/tests/ut/python/adv_robustness/detectors/test_region_based_detector.py index 8d7ae16..b515d12 100644 --- a/tests/ut/python/adv_robustness/detectors/test_region_based_detector.py +++ b/tests/ut/python/adv_robustness/detectors/test_region_based_detector.py @@ -20,7 +20,7 @@ import pytest from mindspore.nn import Cell from mindspore import Model from mindspore import context -from mindspore.ops.operations import TensorAdd +from mindspore.ops.operations import Add from mindarmour.adv_robustness.detectors import RegionBasedDetector @@ -34,7 +34,7 @@ class Net(Cell): """ def __init__(self): super(Net, self).__init__() - self.add = TensorAdd() + self.add = Add() def construct(self, inputs): """ diff --git a/tests/ut/python/privacy/diff_privacy/test_model_train.py b/tests/ut/python/privacy/diff_privacy/test_model_train.py index c15d9d1..71e2d49 100644 --- a/tests/ut/python/privacy/diff_privacy/test_model_train.py +++ b/tests/ut/python/privacy/diff_privacy/test_model_train.py @@ -26,11 +26,13 @@ from mindarmour.privacy.diff_privacy import NoiseMechanismsFactory from mindarmour.privacy.diff_privacy import ClipMechanismsFactory from mindarmour.privacy.diff_privacy import DPOptimizerClassFactory -from ut.python.utils.mock_net import Net +from tests.ut.python.utils.mock_net import Net -def dataset_generator(batch_size, batches): +def dataset_generator(): """mock training data.""" + batch_size = 32 + batches = 128 data = np.random.random((batches*batch_size, 1, 32, 32)).astype( np.float32) label = np.random.randint(0, 10, batches*batch_size).astype(np.int32) @@ -49,8 +51,6 @@ def test_dp_model_with_pynative_mode(): norm_bound = 1.0 initial_noise_multiplier = 0.01 network = Net() - batch_size = 32 - batches = 128 epochs = 1 micro_batches = 2 loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True) @@ -73,7 +73,7 @@ def test_dp_model_with_pynative_mode(): loss_fn=loss, optimizer=net_opt, metrics=None) - ms_ds = ds.GeneratorDataset(dataset_generator(batch_size, batches), + ms_ds = ds.GeneratorDataset(dataset_generator, ['data', 'label']) model.train(epochs, ms_ds, dataset_sink_mode=False) @@ -88,8 +88,6 @@ def test_dp_model_with_graph_mode(): norm_bound = 1.0 initial_noise_multiplier = 0.01 network = Net() - batch_size = 32 - batches = 128 epochs = 1 loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True) noise_mech = NoiseMechanismsFactory().create('Gaussian', @@ -110,7 +108,7 @@ def test_dp_model_with_graph_mode(): loss_fn=loss, optimizer=net_opt, metrics=None) - ms_ds = ds.GeneratorDataset(dataset_generator(batch_size, batches), + ms_ds = ds.GeneratorDataset(dataset_generator, ['data', 'label']) model.train(epochs, ms_ds, dataset_sink_mode=False) @@ -125,8 +123,6 @@ def test_dp_model_with_graph_mode_ada_gaussian(): norm_bound = 1.0 initial_noise_multiplier = 0.01 network = Net() - batch_size = 32 - batches = 128 epochs = 1 alpha = 0.8 loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True) @@ -146,6 +142,6 @@ def test_dp_model_with_graph_mode_ada_gaussian(): loss_fn=loss, optimizer=net_opt, metrics=None) - ms_ds = ds.GeneratorDataset(dataset_generator(batch_size, batches), + ms_ds = ds.GeneratorDataset(dataset_generator, ['data', 'label']) model.train(epochs, ms_ds, dataset_sink_mode=False) diff --git a/tests/ut/python/privacy/diff_privacy/test_monitor.py b/tests/ut/python/privacy/diff_privacy/test_monitor.py index 3e78d04..f741f47 100644 --- a/tests/ut/python/privacy/diff_privacy/test_monitor.py +++ b/tests/ut/python/privacy/diff_privacy/test_monitor.py @@ -25,13 +25,16 @@ import mindspore.context as context from mindarmour.privacy.diff_privacy import PrivacyMonitorFactory from mindarmour.utils.logger import LogUtil -from ut.python.utils.mock_net import Net +from tests.ut.python.utils.mock_net import Net LOGGER = LogUtil.get_instance() TAG = 'DP-Monitor Test' -def dataset_generator(batch_size, batches): +def dataset_generator(): + batch_size = 16 + batches = 128 + data = np.random.random((batches * batch_size, 1, 32, 32)).astype( np.float32) label = np.random.randint(0, 10, batches * batch_size).astype(np.int32) @@ -48,7 +51,6 @@ def dataset_generator(batch_size, batches): def test_dp_monitor(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") batch_size = 16 - batches = 128 epochs = 1 rdp = PrivacyMonitorFactory.create(policy='rdp', num_samples=60000, batch_size=batch_size, @@ -64,19 +66,18 @@ def test_dp_monitor(): model = Model(network, net_loss, net_opt) LOGGER.info(TAG, "============== Starting Training ==============") - ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches), + ds1 = ds.GeneratorDataset(dataset_generator, ["data", "label"]) model.train(epochs, ds1, callbacks=[rdp], dataset_sink_mode=False) @pytest.mark.level0 -@pytest.mark.platform_x86_gpu_inference +@pytest.mark.platform_x86_gpu_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_dp_monitor_gpu(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") batch_size = 16 - batches = 128 epochs = 1 rdp = PrivacyMonitorFactory.create(policy='rdp', num_samples=60000, batch_size=batch_size, @@ -92,7 +93,7 @@ def test_dp_monitor_gpu(): model = Model(network, net_loss, net_opt) LOGGER.info(TAG, "============== Starting Training ==============") - ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches), + ds1 = ds.GeneratorDataset(dataset_generator, ["data", "label"]) model.train(epochs, ds1, callbacks=[rdp], dataset_sink_mode=False) @@ -104,7 +105,6 @@ def test_dp_monitor_gpu(): def test_dp_monitor_cpu(): context.set_context(mode=context.GRAPH_MODE, device_target="CPU") batch_size = 16 - batches = 128 epochs = 1 rdp = PrivacyMonitorFactory.create(policy='rdp', num_samples=60000, batch_size=batch_size, @@ -120,7 +120,7 @@ def test_dp_monitor_cpu(): model = Model(network, net_loss, net_opt) LOGGER.info(TAG, "============== Starting Training ==============") - ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches), + ds1 = ds.GeneratorDataset(dataset_generator, ["data", "label"]) model.train(epochs, ds1, callbacks=[rdp], dataset_sink_mode=False) @@ -133,7 +133,6 @@ def test_dp_monitor_cpu(): def test_dp_monitor_zcdp(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") batch_size = 16 - batches = 128 epochs = 1 zcdp = PrivacyMonitorFactory.create(policy='zcdp', num_samples=60000, batch_size=batch_size, @@ -149,19 +148,18 @@ def test_dp_monitor_zcdp(): model = Model(network, net_loss, net_opt) LOGGER.info(TAG, "============== Starting Training ==============") - ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches), + ds1 = ds.GeneratorDataset(dataset_generator, ["data", "label"]) model.train(epochs, ds1, callbacks=[zcdp], dataset_sink_mode=False) @pytest.mark.level0 -@pytest.mark.platform_x86_gpu_inference +@pytest.mark.platform_x86_gpu_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_dp_monitor_zcdp_gpu(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") batch_size = 16 - batches = 128 epochs = 1 zcdp = PrivacyMonitorFactory.create(policy='zcdp', num_samples=60000, batch_size=batch_size, @@ -177,7 +175,7 @@ def test_dp_monitor_zcdp_gpu(): model = Model(network, net_loss, net_opt) LOGGER.info(TAG, "============== Starting Training ==============") - ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches), + ds1 = ds.GeneratorDataset(dataset_generator, ["data", "label"]) model.train(epochs, ds1, callbacks=[zcdp], dataset_sink_mode=False) @@ -189,7 +187,6 @@ def test_dp_monitor_zcdp_gpu(): def test_dp_monitor_zcdp_cpu(): context.set_context(mode=context.GRAPH_MODE, device_target="CPU") batch_size = 16 - batches = 128 epochs = 1 zcdp = PrivacyMonitorFactory.create(policy='zcdp', num_samples=60000, batch_size=batch_size, @@ -205,6 +202,6 @@ def test_dp_monitor_zcdp_cpu(): model = Model(network, net_loss, net_opt) LOGGER.info(TAG, "============== Starting Training ==============") - ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches), + ds1 = ds.GeneratorDataset(dataset_generator, ["data", "label"]) model.train(epochs, ds1, callbacks=[zcdp], dataset_sink_mode=False) diff --git a/tests/ut/python/privacy/diff_privacy/test_optimizer.py b/tests/ut/python/privacy/diff_privacy/test_optimizer.py index ca08313..e94b149 100644 --- a/tests/ut/python/privacy/diff_privacy/test_optimizer.py +++ b/tests/ut/python/privacy/diff_privacy/test_optimizer.py @@ -19,7 +19,7 @@ from mindspore.train.model import Model from mindarmour.privacy.diff_privacy import DPOptimizerClassFactory -from ut.python.utils.mock_net import Net +from tests.ut.python.utils.mock_net import Net @pytest.mark.level0 @@ -42,7 +42,7 @@ def test_optimizer(): @pytest.mark.level0 -@pytest.mark.platform_x86_gpu_inference +@pytest.mark.platform_x86_gpu_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_optimizer_gpu(): diff --git a/tests/ut/python/privacy/evaluation/test_inversion_attack.py b/tests/ut/python/privacy/evaluation/test_inversion_attack.py index 143680e..234a3f5 100644 --- a/tests/ut/python/privacy/evaluation/test_inversion_attack.py +++ b/tests/ut/python/privacy/evaluation/test_inversion_attack.py @@ -22,7 +22,7 @@ import mindspore.context as context from mindarmour.privacy.evaluation.inversion_attack import ImageInversionAttack -from ut.python.utils.mock_net import Net +from tests.ut.python.utils.mock_net import Net context.set_context(mode=context.GRAPH_MODE) diff --git a/tests/ut/python/privacy/evaluation/test_membership_inference.py b/tests/ut/python/privacy/evaluation/test_membership_inference.py index f7b22ff..6353911 100644 --- a/tests/ut/python/privacy/evaluation/test_membership_inference.py +++ b/tests/ut/python/privacy/evaluation/test_membership_inference.py @@ -25,14 +25,16 @@ import mindspore.context as context from mindarmour.privacy.evaluation import MembershipInference -from ut.python.utils.mock_net import Net +from tests.ut.python.utils.mock_net import Net context.set_context(mode=context.GRAPH_MODE) -def dataset_generator(batch_size, batches): +def dataset_generator(): """mock training data.""" + batch_size = 16 + batches = 1 data = np.random.randn(batches*batch_size, 1, 32, 32).astype( np.float32) label = np.random.randint(0, 10, batches*batch_size).astype(np.int32) @@ -74,11 +76,9 @@ def test_membership_inference_object_train(): "n_neighbors": [3, 5, 7], } }] - batch_size = 16 - batches = 1 - ds_train = ds.GeneratorDataset(dataset_generator(batch_size, batches), + ds_train = ds.GeneratorDataset(dataset_generator, ["image", "label"]) - ds_test = ds.GeneratorDataset(dataset_generator(batch_size, batches), + ds_test = ds.GeneratorDataset(dataset_generator, ["image", "label"]) inference_model.train(ds_train, ds_test, config) @@ -96,11 +96,9 @@ def test_membership_inference_eval(): inference_model = MembershipInference(model, -1) assert isinstance(inference_model, MembershipInference) - batch_size = 16 - batches = 1 - eval_train = ds.GeneratorDataset(dataset_generator(batch_size, batches), + eval_train = ds.GeneratorDataset(dataset_generator, ["image", "label"]) - eval_test = ds.GeneratorDataset(dataset_generator(batch_size, batches), + eval_test = ds.GeneratorDataset(dataset_generator, ["image", "label"]) metrics = ["precision", "accuracy", "recall"] diff --git a/tests/ut/python/privacy/sup_privacy/test_model_train.py b/tests/ut/python/privacy/sup_privacy/test_model_train.py index 976f037..ca3cf90 100644 --- a/tests/ut/python/privacy/sup_privacy/test_model_train.py +++ b/tests/ut/python/privacy/sup_privacy/test_model_train.py @@ -25,15 +25,18 @@ from mindspore.train.callback import LossMonitor from mindspore.nn.metrics import Accuracy import mindspore.dataset as ds -from ut.python.utils.mock_net import Net as LeNet5 - from mindarmour.privacy.sup_privacy import SuppressModel from mindarmour.privacy.sup_privacy import SuppressMasker from mindarmour.privacy.sup_privacy import SuppressPrivacyFactory from mindarmour.privacy.sup_privacy import MaskLayerDes -def dataset_generator(batch_size, batches): +from tests.ut.python.utils.mock_net import Net as LeNet5 + + +def dataset_generator(): """mock training data.""" + batches = 10 + batch_size = 32 data = np.random.random((batches*batch_size, 1, 32, 32)).astype( np.float32) label = np.random.randint(0, 10, batches*batch_size).astype(np.int32) @@ -51,7 +54,6 @@ def test_suppress_model_with_pynative_mode(): networks_l5 = LeNet5() epochs = 5 batch_num = 10 - batch_size = 32 mask_times = 10 lr = 0.01 masklayers_lenet5 = [] @@ -79,7 +81,7 @@ def test_suppress_model_with_pynative_mode(): ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet", directory="./trained_ckpt_file/", config=config_ck) - ds_train = ds.GeneratorDataset(dataset_generator(batch_size, batch_num), ['data', 'label']) + ds_train = ds.GeneratorDataset(dataset_generator, ['data', 'label']) model_instance.train(epochs, ds_train, callbacks=[ckpoint_cb, LossMonitor(), suppress_masker], dataset_sink_mode=False)