Merge pull request !422 from 宦晓玲/r1.9r1.9
@@ -1,3 +1,3 @@ | |||
mindspore: | |||
'mindspore/mindspore/version/202205/20220525/master_20220525210238_42306df4865f816c48a720d98e50ba2e586b1f59/' | |||
'mindspore/mindspore/version/202209/20220923/r1.9_20220923224458_c16390f59ab8dace3bb7e5a6ab4ae4d3bfe74bea/' | |||
@@ -58,7 +58,7 @@ mindarmour.adv_robustness.defenses | |||
参数: | |||
- **network** (Cell) - 要防御的MindSpore网络。 | |||
- **loss_fn** (Union[Loss, None]) - 损失函数。默认值:None。 | |||
- **optimizer** (Cell):用于训练网络的优化器。默认值:None。 | |||
- **optimizer** (Cell) - 用于训练网络的优化器。默认值:None。 | |||
- **bounds** (tuple) - 数据的上下界。以(clip_min, clip_max)的形式出现。默认值:(0.0, 1.0)。 | |||
- **replace_ratio** (float) - 用对抗样本替换原始样本的比率。默认值:0.5。 | |||
- **eps** (float) - 攻击方法(FGSM)的步长。默认值:0.1。 | |||
@@ -8,10 +8,10 @@ mindarmour.privacy.diff_privacy | |||
基于 :math:`mean=0` 以及 :math:`standard\_deviation = norm\_bound * initial\_noise\_multiplier` 的高斯分布产生噪声。 | |||
参数: | |||
- **norm_bound** (float)- 梯度的l2范数的裁剪范围。默认值:1.0。 | |||
- **initial_noise_multiplier** (float)- 高斯噪声标准偏差除以 `norm_bound` 的比率,将用于计算隐私预算。默认值:1.0。 | |||
- **seed** (int)- 原始随机种子,如果seed=0随机正态将使用安全随机数。如果seed!=0随机正态将使用给定的种子生成值。默认值:0。 | |||
- **decay_policy** (str)- 衰减策略。默认值:None。 | |||
- **norm_bound** (float) - 梯度的l2范数的裁剪范围。默认值:1.0。 | |||
- **initial_noise_multiplier** (float) - 高斯噪声标准偏差除以 `norm_bound` 的比率,将用于计算隐私预算。默认值:1.0。 | |||
- **seed** (int) - 原始随机种子,如果seed=0随机正态将使用安全随机数。如果seed!=0随机正态将使用给定的种子生成值。默认值:0。 | |||
- **decay_policy** (str) - 衰减策略。默认值:None。 | |||
.. py:method:: construct(gradients) | |||
@@ -26,8 +26,8 @@ mindarmour.privacy.evaluation | |||
评估指标应由metrics规定。 | |||
参数: | |||
- **dataset_train** (minspore.dataset) - 目标模型的训练数据集。 | |||
- **dataset_test** (minspore.dataset) - 目标模型的测试数据集。 | |||
- **dataset_train** (mindspore.dataset) - 目标模型的训练数据集。 | |||
- **dataset_test** (mindspore.dataset) - 目标模型的测试数据集。 | |||
- **metrics** (Union[list, tuple]) - 评估指标。指标的值必须在["precision", "accuracy", "recall"]中。默认值:["precision"]。 | |||
返回: | |||
@@ -38,8 +38,8 @@ mindarmour.privacy.evaluation | |||
根据配置,使用输入数据集训练攻击模型。 | |||
参数: | |||
- **dataset_train** (minspore.dataset) - 目标模型的训练数据集。 | |||
- **dataset_test** (minspore.dataset) - 目标模型的测试集。 | |||
- **dataset_train** (mindspore.dataset) - 目标模型的训练数据集。 | |||
- **dataset_test** (mindspore.dataset) - 目标模型的测试集。 | |||
- **attack_config** (Union[list, tuple]) - 攻击模型的参数设置。格式为 | |||
.. code-block:: python | |||
@@ -236,8 +236,8 @@ MindArmour是MindSpore的工具箱,用于增强模型可信,实现隐私保 | |||
评估指标应由metrics规定。 | |||
参数: | |||
- **dataset_train** (minspore.dataset) - 目标模型的训练数据集。 | |||
- **dataset_test** (minspore.dataset) - 目标模型的测试数据集。 | |||
- **dataset_train** (mindspore.dataset) - 目标模型的训练数据集。 | |||
- **dataset_test** (mindspore.dataset) - 目标模型的测试数据集。 | |||
- **metrics** (Union[list, tuple]) - 评估指标。指标的值必须在["precision", "accuracy", "recall"]中。默认值:["precision"]。 | |||
返回: | |||
@@ -248,8 +248,8 @@ MindArmour是MindSpore的工具箱,用于增强模型可信,实现隐私保 | |||
根据配置,使用输入数据集训练攻击模型。 | |||
参数: | |||
- **dataset_train** (minspore.dataset) - 目标模型的训练数据集。 | |||
- **dataset_test** (minspore.dataset) - 目标模型的测试集。 | |||
- **dataset_train** (mindspore.dataset) - 目标模型的训练数据集。 | |||
- **dataset_test** (mindspore.dataset) - 目标模型的测试集。 | |||
- **attack_config** (Union[list, tuple]) - 攻击模型的参数设置。格式为: | |||
.. code-block:: | |||
@@ -35,14 +35,14 @@ class PointWiseAttack(Attack): | |||
References: `L. Schott, J. Rauber, M. Bethge, W. Brendel: "Towards the | |||
first adversarially robust neural network model on MNIST", ICLR (2019) | |||
<https://arxiv.org/abs/1805.09190>`_ | |||
<https://arxiv.org/abs/1805.09190>`_. | |||
Args: | |||
model (BlackModel): Target model. | |||
max_iter (int): Max rounds of iteration to generate adversarial image. Default: 1000. | |||
search_iter (int): Max rounds of binary search. Default: 10. | |||
is_targeted (bool): If True, targeted attack. If False, untargeted attack. Default: False. | |||
init_attack (Attack): Attack used to find a starting point. Default: None. | |||
init_attack (Union[Attack, None]): Attack used to find a starting point. Default: None. | |||
sparse (bool): If True, input labels are sparse-encoded. If False, input labels are one-hot-encoded. | |||
Default: True. | |||
@@ -96,7 +96,7 @@ class DeepFool(Attack): | |||
sample to the nearest classification boundary and crossing the boundary. | |||
Reference: `DeepFool: a simple and accurate method to fool deep neural | |||
networks <https://arxiv.org/abs/1511.04599>`_ | |||
networks <https://arxiv.org/abs/1511.04599>`_. | |||
Args: | |||
network (Cell): Target model. | |||
@@ -109,7 +109,7 @@ class DeepFool(Attack): | |||
max_iters (int): Max iterations, which should be | |||
greater than zero. Default: 50. | |||
overshoot (float): Overshoot parameter. Default: 0.02. | |||
norm_level (Union[int, str]): Order of the vector norm. Possible values: np.inf | |||
norm_level (Union[int, str, numpy.inf]): Order of the vector norm. Possible values: np.inf | |||
or 2. Default: 2. | |||
bounds (Union[tuple, list]): Upper and lower bounds of data range. In form of (clip_min, | |||
clip_max). Default: None. | |||
@@ -130,21 +130,21 @@ class FastGradientMethod(GradientMethod): | |||
References: `I. J. Goodfellow, J. Shlens, and C. Szegedy, "Explaining | |||
and harnessing adversarial examples," in ICLR, 2015. | |||
<https://arxiv.org/abs/1412.6572>`_ | |||
<https://arxiv.org/abs/1412.6572>`_. | |||
Args: | |||
network (Cell): Target model. | |||
eps (float): Proportion of single-step adversarial perturbation generated | |||
by the attack to data range. Default: 0.07. | |||
alpha (float): Proportion of single-step random perturbation to data range. | |||
alpha (Union[float, None]): Proportion of single-step random perturbation to data range. | |||
Default: None. | |||
bounds (tuple): Upper and lower bounds of data, indicating the data range. | |||
In form of (clip_min, clip_max). Default: (0.0, 1.0). | |||
norm_level (Union[int, numpy.inf]): Order of the norm. | |||
norm_level (Union[int, str, numpy.inf]): Order of the norm. | |||
Possible values: np.inf, 1 or 2. Default: 2. | |||
is_targeted (bool): If True, targeted attack. If False, untargeted | |||
attack. Default: False. | |||
loss_fn (Loss): Loss function for optimization. If None, the input network \ | |||
loss_fn (Union[loss, None]): Loss function for optimization. If None, the input network \ | |||
is already equipped with loss function. Default: None. | |||
Examples: | |||
@@ -207,7 +207,7 @@ class RandomFastGradientMethod(FastGradientMethod): | |||
References: `Florian Tramer, Alexey Kurakin, Nicolas Papernot, "Ensemble | |||
adversarial training: Attacks and defenses" in ICLR, 2018 | |||
<https://arxiv.org/abs/1705.07204>`_ | |||
<https://arxiv.org/abs/1705.07204>`_. | |||
Args: | |||
network (Cell): Target model. | |||
@@ -217,11 +217,11 @@ class RandomFastGradientMethod(FastGradientMethod): | |||
Default: 0.035. | |||
bounds (tuple): Upper and lower bounds of data, indicating the data range. | |||
In form of (clip_min, clip_max). Default: (0.0, 1.0). | |||
norm_level (Union[int, numpy.inf]): Order of the norm. | |||
norm_level (Union[int, str, numpy.inf): Order of the norm. | |||
Possible values: np.inf, 1 or 2. Default: 2. | |||
is_targeted (bool): If True, targeted attack. If False, untargeted | |||
attack. Default: False. | |||
loss_fn (Loss): Loss function for optimization. If None, the input network \ | |||
loss_fn (Union[loss, None]): Loss function for optimization. If None, the input network \ | |||
is already equipped with loss function. Default: None. | |||
Raises: | |||
@@ -264,19 +264,19 @@ class FastGradientSignMethod(GradientMethod): | |||
References: `Ian J. Goodfellow, J. Shlens, and C. Szegedy, "Explaining | |||
and harnessing adversarial examples," in ICLR, 2015 | |||
<https://arxiv.org/abs/1412.6572>`_ | |||
<https://arxiv.org/abs/1412.6572>`_. | |||
Args: | |||
network (Cell): Target model. | |||
eps (float): Proportion of single-step adversarial perturbation generated | |||
by the attack to data range. Default: 0.07. | |||
alpha (float): Proportion of single-step random perturbation to data range. | |||
alpha (Union[float, None]): Proportion of single-step random perturbation to data range. | |||
Default: None. | |||
bounds (tuple): Upper and lower bounds of data, indicating the data range. | |||
In form of (clip_min, clip_max). Default: (0.0, 1.0). | |||
is_targeted (bool): If True, targeted attack. If False, untargeted | |||
attack. Default: False. | |||
loss_fn (Loss): Loss function for optimization. If None, the input network \ | |||
loss_fn (Union[Loss, None]): Loss function for optimization. If None, the input network \ | |||
is already equipped with loss function. Default: None. | |||
Examples: | |||
@@ -338,7 +338,7 @@ class RandomFastGradientSignMethod(FastGradientSignMethod): | |||
to create adversarial noises. | |||
References: `F. Tramer, et al., "Ensemble adversarial training: Attacks | |||
and defenses," in ICLR, 2018 <https://arxiv.org/abs/1705.07204>`_ | |||
and defenses," in ICLR, 2018 <https://arxiv.org/abs/1705.07204>`_. | |||
Args: | |||
network (Cell): Target model. | |||
@@ -350,7 +350,7 @@ class RandomFastGradientSignMethod(FastGradientSignMethod): | |||
In form of (clip_min, clip_max). Default: (0.0, 1.0). | |||
is_targeted (bool): True: targeted attack. False: untargeted attack. | |||
Default: False. | |||
loss_fn (Loss): Loss function for optimization. If None, the input network \ | |||
loss_fn (Union[Loss, None]): Loss function for optimization. If None, the input network \ | |||
is already equipped with loss function. Default: None. | |||
Raises: | |||
@@ -391,17 +391,17 @@ class LeastLikelyClassMethod(FastGradientSignMethod): | |||
least-likely class to generate the adversarial examples. | |||
References: `F. Tramer, et al., "Ensemble adversarial training: Attacks | |||
and defenses," in ICLR, 2018 <https://arxiv.org/abs/1705.07204>`_ | |||
and defenses," in ICLR, 2018 <https://arxiv.org/abs/1705.07204>`_. | |||
Args: | |||
network (Cell): Target model. | |||
eps (float): Proportion of single-step adversarial perturbation generated | |||
by the attack to data range. Default: 0.07. | |||
alpha (float): Proportion of single-step random perturbation to data range. | |||
alpha (Union[float, None]): Proportion of single-step random perturbation to data range. | |||
Default: None. | |||
bounds (tuple): Upper and lower bounds of data, indicating the data range. | |||
In form of (clip_min, clip_max). Default: (0.0, 1.0). | |||
loss_fn (Loss): Loss function for optimization. If None, the input network \ | |||
loss_fn (Union[Loss, None]): Loss function for optimization. If None, the input network \ | |||
is already equipped with loss function. Default: None. | |||
Examples: | |||
@@ -439,7 +439,7 @@ class RandomLeastLikelyClassMethod(FastGradientSignMethod): | |||
targets the least-likely class to generate the adversarial examples. | |||
References: `F. Tramer, et al., "Ensemble adversarial training: Attacks | |||
and defenses," in ICLR, 2018 <https://arxiv.org/abs/1705.07204>`_ | |||
and defenses," in ICLR, 2018 <https://arxiv.org/abs/1705.07204>`_. | |||
Args: | |||
network (Cell): Target model. | |||
@@ -449,7 +449,7 @@ class RandomLeastLikelyClassMethod(FastGradientSignMethod): | |||
Default: 0.035. | |||
bounds (tuple): Upper and lower bounds of data, indicating the data range. | |||
In form of (clip_min, clip_max). Default: (0.0, 1.0). | |||
loss_fn (Loss): Loss function for optimization. If None, the input network \ | |||
loss_fn (Union[Loss, None]): Loss function for optimization. If None, the input network \ | |||
is already equipped with loss function. Default: None. | |||
Raises: | |||
@@ -115,7 +115,7 @@ class IterativeGradientMethod(Attack): | |||
bounds (tuple): Upper and lower bounds of data, indicating the data range. | |||
In form of (clip_min, clip_max). Default: (0.0, 1.0). | |||
nb_iter (int): Number of iteration. Default: 5. | |||
loss_fn (Loss): Loss function for optimization. If None, the input network \ | |||
loss_fn (Union[Loss, None]): Loss function for optimization. If None, the input network \ | |||
is already equipped with loss function. Default: None. | |||
""" | |||
def __init__(self, network, eps=0.3, eps_iter=0.1, bounds=(0.0, 1.0), nb_iter=5, | |||
@@ -162,7 +162,7 @@ class BasicIterativeMethod(IterativeGradientMethod): | |||
adversarial examples. | |||
References: `A. Kurakin, I. Goodfellow, and S. Bengio, "Adversarial examples | |||
in the physical world," in ICLR, 2017 <https://arxiv.org/abs/1607.02533>`_ | |||
in the physical world," in ICLR, 2017 <https://arxiv.org/abs/1607.02533>`_. | |||
Args: | |||
network (Cell): Target model. | |||
@@ -175,7 +175,7 @@ class BasicIterativeMethod(IterativeGradientMethod): | |||
is_targeted (bool): If True, targeted attack. If False, untargeted | |||
attack. Default: False. | |||
nb_iter (int): Number of iteration. Default: 5. | |||
loss_fn (Loss): Loss function for optimization. If None, the input network \ | |||
loss_fn (Union[Loss, None]): Loss function for optimization. If None, the input network \ | |||
is already equipped with loss function. Default: None. | |||
Examples: | |||
@@ -263,7 +263,7 @@ class MomentumIterativeMethod(IterativeGradientMethod): | |||
References: `Y. Dong, et al., "Boosting adversarial attacks with | |||
momentum," arXiv:1710.06081, 2017 <https://arxiv.org/abs/1710.06081>`_ | |||
momentum," arXiv:1710.06081, 2017 <https://arxiv.org/abs/1710.06081>`_. | |||
Args: | |||
network (Cell): Target model. | |||
@@ -277,9 +277,9 @@ class MomentumIterativeMethod(IterativeGradientMethod): | |||
attack. Default: False. | |||
nb_iter (int): Number of iteration. Default: 5. | |||
decay_factor (float): Decay factor in iterations. Default: 1.0. | |||
norm_level (Union[int, numpy.inf]): Order of the norm. Possible values: | |||
norm_level (Union[int, str, numpy.inf]): Order of the norm. Possible values: | |||
np.inf, 1 or 2. Default: 'inf'. | |||
loss_fn (Loss): Loss function for optimization. If None, the input network \ | |||
loss_fn (Union[Loss, None]): Loss function for optimization. If None, the input network \ | |||
is already equipped with loss function. Default: None. | |||
Examples: | |||
@@ -407,7 +407,7 @@ class ProjectedGradientDescent(BasicIterativeMethod): | |||
the attack proposed by Madry et al. for adversarial training. | |||
References: `A. Madry, et al., "Towards deep learning models resistant to | |||
adversarial attacks," in ICLR, 2018 <https://arxiv.org/abs/1706.06083>`_ | |||
adversarial attacks," in ICLR, 2018 <https://arxiv.org/abs/1706.06083>`_. | |||
Args: | |||
network (Cell): Target model. | |||
@@ -420,9 +420,9 @@ class ProjectedGradientDescent(BasicIterativeMethod): | |||
is_targeted (bool): If True, targeted attack. If False, untargeted | |||
attack. Default: False. | |||
nb_iter (int): Number of iteration. Default: 5. | |||
norm_level (Union[int, numpy.inf]): Order of the norm. Possible values: | |||
norm_level (Union[int, str, numpy.inf]): Order of the norm. Possible values: | |||
np.inf, 1 or 2. Default: 'inf'. | |||
loss_fn (Loss): Loss function for optimization. If None, the input network \ | |||
loss_fn (Union[Loss, None]): Loss function for optimization. If None, the input network \ | |||
is already equipped with loss function. Default: None. | |||
Examples: | |||
@@ -503,7 +503,7 @@ class DiverseInputIterativeMethod(BasicIterativeMethod): | |||
on the input data could improve the transferability of the adversarial examples. | |||
References: `Xie, Cihang and Zhang, et al., "Improving Transferability of | |||
Adversarial Examples With Input Diversity," in CVPR, 2019 <https://arxiv.org/abs/1803.06978>`_ | |||
Adversarial Examples With Input Diversity," in CVPR, 2019 <https://arxiv.org/abs/1803.06978>`_. | |||
Args: | |||
network (Cell): Target model. | |||
@@ -514,7 +514,7 @@ class DiverseInputIterativeMethod(BasicIterativeMethod): | |||
is_targeted (bool): If True, targeted attack. If False, untargeted | |||
attack. Default: False. | |||
prob (float): Transformation probability. Default: 0.5. | |||
loss_fn (Loss): Loss function for optimization. If None, the input network \ | |||
loss_fn (Union[Loss, None]): Loss function for optimization. If None, the input network \ | |||
is already equipped with loss function. Default: None. | |||
Examples: | |||
@@ -558,7 +558,7 @@ class MomentumDiverseInputIterativeMethod(MomentumIterativeMethod): | |||
References: `Xie, Cihang and Zhang, et al., "Improving Transferability of | |||
Adversarial Examples With Input Diversity," in CVPR, 2019 <https://arxiv.org/abs/1803.06978>`_ | |||
Adversarial Examples With Input Diversity," in CVPR, 2019 <https://arxiv.org/abs/1803.06978>`_. | |||
Args: | |||
network (Cell): Target model. | |||
@@ -568,10 +568,10 @@ class MomentumDiverseInputIterativeMethod(MomentumIterativeMethod): | |||
In form of (clip_min, clip_max). Default: (0.0, 1.0). | |||
is_targeted (bool): If True, targeted attack. If False, untargeted | |||
attack. Default: False. | |||
norm_level (Union[int, numpy.inf]): Order of the norm. Possible values: | |||
norm_level (Union[int, str, numpy.inf]): Order of the norm. Possible values: | |||
np.inf, 1 or 2. Default: 'l1'. | |||
prob (float): Transformation probability. Default: 0.5. | |||
loss_fn (Loss): Loss function for optimization. If None, the input network \ | |||
loss_fn (Union[Loss, None]): Loss function for optimization. If None, the input network \ | |||
is already equipped with loss function. Default: None. | |||
Examples: | |||
@@ -32,7 +32,7 @@ class AdversarialDefense(Defense): | |||
Args: | |||
network (Cell): A MindSpore network to be defensed. | |||
loss_fn (Functions): Loss function. Default: None. | |||
loss_fn (Union[Loss, None]): Loss function. Default: None. | |||
optimizer (Cell): Optimizer used to train the network. Default: None. | |||
Examples: | |||
@@ -105,7 +105,7 @@ class AdversarialDefenseWithAttacks(AdversarialDefense): | |||
Args: | |||
network (Cell): A MindSpore network to be defensed. | |||
attacks (list[Attack]): List of attack method. | |||
loss_fn (Functions): Loss function. Default: None. | |||
loss_fn (Union[Loss, None]): Loss function. Default: None. | |||
optimizer (Cell): Optimizer used to train the network. Default: None. | |||
bounds (tuple): Upper and lower bounds of data. In form of (clip_min, | |||
clip_max). Default: (0.0, 1.0). | |||
@@ -204,7 +204,7 @@ class EnsembleAdversarialDefense(AdversarialDefenseWithAttacks): | |||
Args: | |||
network (Cell): A MindSpore network to be defensed. | |||
attacks (list[Attack]): List of attack method. | |||
loss_fn (Functions): Loss function. Default: None. | |||
loss_fn (Union[Loss, None]): Loss function. Default: None. | |||
optimizer (Cell): Optimizer used to train the network. Default: None. | |||
bounds (tuple): Upper and lower bounds of data. In form of (clip_min, | |||
clip_max). Default: (0.0, 1.0). | |||
@@ -23,11 +23,11 @@ class NaturalAdversarialDefense(AdversarialDefenseWithAttacks): | |||
Adversarial training based on FGSM. | |||
Reference: `A. Kurakin, et al., "Adversarial machine learning at scale," in | |||
ICLR, 2017. <https://arxiv.org/abs/1611.01236>`_ | |||
ICLR, 2017. <https://arxiv.org/abs/1611.01236>`_. | |||
Args: | |||
network (Cell): A MindSpore network to be defensed. | |||
loss_fn (Functions): Loss function. Default: None. | |||
loss_fn (Union[Loss, None]): Loss function. Default: None. | |||
optimizer (Cell): Optimizer used to train the network. Default: None. | |||
bounds (tuple): Upper and lower bounds of data. In form of (clip_min, | |||
clip_max). Default: (0.0, 1.0). | |||
@@ -23,11 +23,11 @@ class ProjectedAdversarialDefense(AdversarialDefenseWithAttacks): | |||
Adversarial training based on PGD. | |||
Reference: `A. Madry, et al., "Towards deep learning models resistant to | |||
adversarial attacks," in ICLR, 2018. <https://arxiv.org/abs/1611.01236>`_ | |||
adversarial attacks," in ICLR, 2018. <https://arxiv.org/abs/1611.01236>`_. | |||
Args: | |||
network (Cell): A MindSpore network to be defensed. | |||
loss_fn (Functions): Loss function. Default: None. | |||
loss_fn (Union[Loss, None]): Loss function. Default: None. | |||
optimizer (Cell): Optimizer used to train the nerwork. Default: None. | |||
bounds (tuple): Upper and lower bounds of input data. In form of | |||
(clip_min, clip_max). Default: (0.0, 1.0). | |||
@@ -103,7 +103,7 @@ class MembershipInference: | |||
References: `Reza Shokri, Marco Stronati, Congzheng Song, Vitaly Shmatikov. | |||
Membership Inference Attacks against Machine Learning Models. 2017. | |||
<https://arxiv.org/abs/1610.05820v2>`_ | |||
<https://arxiv.org/abs/1610.05820v2>`_. | |||
Args: | |||
model (Model): Target model. | |||