diff --git a/examples/privacy/diff_privacy/lenet5_dp_ada_gaussian.py b/examples/privacy/diff_privacy/lenet5_dp_ada_gaussian.py index 918d824..b8aa663 100644 --- a/examples/privacy/diff_privacy/lenet5_dp_ada_gaussian.py +++ b/examples/privacy/diff_privacy/lenet5_dp_ada_gaussian.py @@ -122,7 +122,8 @@ if __name__ == "__main__": num_samples=60000, batch_size=cfg.batch_size, initial_noise_multiplier=cfg.initial_noise_multiplier, - per_print_times=234) + per_print_times=234, + target_delta=1e-5) # Create the DP model for training. model = DPModel(micro_batches=cfg.micro_batches, norm_bound=cfg.norm_bound, diff --git a/examples/privacy/diff_privacy/lenet5_dp_ada_sgd_graph.py b/examples/privacy/diff_privacy/lenet5_dp_ada_sgd_graph.py index 0c36419..0baf539 100644 --- a/examples/privacy/diff_privacy/lenet5_dp_ada_sgd_graph.py +++ b/examples/privacy/diff_privacy/lenet5_dp_ada_sgd_graph.py @@ -122,7 +122,8 @@ if __name__ == "__main__": num_samples=60000, batch_size=cfg.batch_size, initial_noise_multiplier=cfg.initial_noise_multiplier, - per_print_times=234) + per_print_times=234, + target_delta=1e-5) # Create the DP model for training. model = DPModel(micro_batches=cfg.micro_batches, norm_bound=cfg.norm_bound, diff --git a/examples/privacy/diff_privacy/lenet5_dp_optimizer.py b/examples/privacy/diff_privacy/lenet5_dp_optimizer.py index 05f7205..db38965 100644 --- a/examples/privacy/diff_privacy/lenet5_dp_optimizer.py +++ b/examples/privacy/diff_privacy/lenet5_dp_optimizer.py @@ -129,7 +129,8 @@ if __name__ == "__main__": num_samples=60000, batch_size=cfg.batch_size, initial_noise_multiplier=cfg.initial_noise_multiplier*cfg.norm_bound, - per_print_times=10) + per_print_times=10, + target_delta=1e-5) # Create the DP model for training. model = DPModel(micro_batches=cfg.micro_batches, norm_bound=cfg.norm_bound,