@@ -122,7 +122,8 @@ if __name__ == "__main__": | |||||
num_samples=60000, | num_samples=60000, | ||||
batch_size=cfg.batch_size, | batch_size=cfg.batch_size, | ||||
initial_noise_multiplier=cfg.initial_noise_multiplier, | initial_noise_multiplier=cfg.initial_noise_multiplier, | ||||
per_print_times=234) | |||||
per_print_times=234, | |||||
target_delta=1e-5) | |||||
# Create the DP model for training. | # Create the DP model for training. | ||||
model = DPModel(micro_batches=cfg.micro_batches, | model = DPModel(micro_batches=cfg.micro_batches, | ||||
norm_bound=cfg.norm_bound, | norm_bound=cfg.norm_bound, | ||||
@@ -122,7 +122,8 @@ if __name__ == "__main__": | |||||
num_samples=60000, | num_samples=60000, | ||||
batch_size=cfg.batch_size, | batch_size=cfg.batch_size, | ||||
initial_noise_multiplier=cfg.initial_noise_multiplier, | initial_noise_multiplier=cfg.initial_noise_multiplier, | ||||
per_print_times=234) | |||||
per_print_times=234, | |||||
target_delta=1e-5) | |||||
# Create the DP model for training. | # Create the DP model for training. | ||||
model = DPModel(micro_batches=cfg.micro_batches, | model = DPModel(micro_batches=cfg.micro_batches, | ||||
norm_bound=cfg.norm_bound, | norm_bound=cfg.norm_bound, | ||||
@@ -129,7 +129,8 @@ if __name__ == "__main__": | |||||
num_samples=60000, | num_samples=60000, | ||||
batch_size=cfg.batch_size, | batch_size=cfg.batch_size, | ||||
initial_noise_multiplier=cfg.initial_noise_multiplier*cfg.norm_bound, | initial_noise_multiplier=cfg.initial_noise_multiplier*cfg.norm_bound, | ||||
per_print_times=10) | |||||
per_print_times=10, | |||||
target_delta=1e-5) | |||||
# Create the DP model for training. | # Create the DP model for training. | ||||
model = DPModel(micro_batches=cfg.micro_batches, | model = DPModel(micro_batches=cfg.micro_batches, | ||||
norm_bound=cfg.norm_bound, | norm_bound=cfg.norm_bound, | ||||