|
|
@@ -1,105 +0,0 @@ |
|
|
|
# Copyright 2019 Huawei Technologies Co., Ltd |
|
|
|
# |
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
# You may obtain a copy of the License at |
|
|
|
# |
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
# |
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
# limitations under the License. |
|
|
|
""" |
|
|
|
mocked model for UT of defense algorithms. |
|
|
|
""" |
|
|
|
import numpy as np |
|
|
|
|
|
|
|
from mindspore import nn |
|
|
|
from mindspore import Tensor |
|
|
|
from mindspore.nn import WithLossCell, TrainOneStepCell |
|
|
|
from mindspore.nn.optim.momentum import Momentum |
|
|
|
from mindspore import context |
|
|
|
from mindspore.common.initializer import TruncatedNormal |
|
|
|
|
|
|
|
from mindarmour.adv_robustness.attacks import FastGradientSignMethod |
|
|
|
|
|
|
|
|
|
|
|
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0): |
|
|
|
weight = weight_variable() |
|
|
|
return nn.Conv2d(in_channels, out_channels, |
|
|
|
kernel_size=kernel_size, stride=stride, padding=padding, |
|
|
|
weight_init=weight, has_bias=False, pad_mode="valid") |
|
|
|
|
|
|
|
|
|
|
|
def fc_with_initialize(input_channels, out_channels): |
|
|
|
weight = weight_variable() |
|
|
|
bias = weight_variable() |
|
|
|
return nn.Dense(input_channels, out_channels, weight, bias) |
|
|
|
|
|
|
|
|
|
|
|
def weight_variable(): |
|
|
|
return TruncatedNormal(0.02) |
|
|
|
|
|
|
|
|
|
|
|
class Net(nn.Cell): |
|
|
|
""" |
|
|
|
Lenet network |
|
|
|
""" |
|
|
|
def __init__(self): |
|
|
|
super(Net, self).__init__() |
|
|
|
self.conv1 = conv(1, 6, 5) |
|
|
|
self.conv2 = conv(6, 16, 5) |
|
|
|
self.fc1 = fc_with_initialize(16*5*5, 120) |
|
|
|
self.fc2 = fc_with_initialize(120, 84) |
|
|
|
self.fc3 = fc_with_initialize(84, 10) |
|
|
|
self.relu = nn.ReLU() |
|
|
|
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) |
|
|
|
self.flatten = nn.Flatten() |
|
|
|
|
|
|
|
def construct(self, x): |
|
|
|
x = self.conv1(x) |
|
|
|
x = self.relu(x) |
|
|
|
x = self.max_pool2d(x) |
|
|
|
x = self.conv2(x) |
|
|
|
x = self.relu(x) |
|
|
|
x = self.max_pool2d(x) |
|
|
|
x = self.flatten(x) |
|
|
|
x = self.fc1(x) |
|
|
|
x = self.relu(x) |
|
|
|
x = self.fc2(x) |
|
|
|
x = self.relu(x) |
|
|
|
x = self.fc3(x) |
|
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
num_classes = 10 |
|
|
|
batch_size = 32 |
|
|
|
|
|
|
|
sparse = False |
|
|
|
context.set_context(mode=context.GRAPH_MODE) |
|
|
|
context.set_context(device_target='Ascend') |
|
|
|
|
|
|
|
# create test data |
|
|
|
inputs_np = np.random.rand(batch_size, 1, 32, 32).astype(np.float32) |
|
|
|
labels_np = np.random.randint(num_classes, size=batch_size).astype(np.int32) |
|
|
|
if not sparse: |
|
|
|
labels_np = np.eye(num_classes)[labels_np].astype(np.float32) |
|
|
|
|
|
|
|
net = Net() |
|
|
|
|
|
|
|
# test fgsm |
|
|
|
attack = FastGradientSignMethod(net, eps=0.3) |
|
|
|
attack.generate(inputs_np, labels_np) |
|
|
|
|
|
|
|
# test train ops |
|
|
|
loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=sparse) |
|
|
|
optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), |
|
|
|
0.01, 0.9) |
|
|
|
loss_net = WithLossCell(net, loss_fn) |
|
|
|
train_net = TrainOneStepCell(loss_net, optimizer) |
|
|
|
train_net.set_train() |
|
|
|
|
|
|
|
train_net(Tensor(inputs_np), Tensor(labels_np)) |