@@ -51,7 +51,7 @@ def test_lenet_mnist_coverage(): | |||
train_images = np.concatenate(train_images, axis=0) | |||
# initialize fuzz test with training dataset | |||
model_fuzz_test = ModelCoverageMetrics(model, 10000, 10, train_images) | |||
model_fuzz_test = ModelCoverageMetrics(model, 10, 1000, train_images) | |||
# fuzz test with original test data | |||
# get test data | |||
@@ -39,14 +39,22 @@ def test_lenet_mnist_fuzzing(): | |||
load_param_into_net(net, load_dict) | |||
model = Model(net) | |||
mutate_config = [{'method': 'Blur', | |||
'params': {'auto_param': True}}, | |||
{'method': 'Contrast', | |||
'params': {'factor': 2}}, | |||
{'method': 'Translate', | |||
'params': {'x_bias': 0.1, 'y_bias': 0.2}}, | |||
{'method': 'FGSM', | |||
'params': {'eps': 0.1, 'alpha': 0.1}} | |||
] | |||
'params': {'auto_param': True}}, | |||
{'method': 'Contrast', | |||
'params': {'auto_param': True}}, | |||
{'method': 'Translate', | |||
'params': {'auto_param': True}}, | |||
{'method': 'Brightness', | |||
'params': {'auto_param': True}}, | |||
{'method': 'Noise', | |||
'params': {'auto_param': True}}, | |||
{'method': 'Scale', | |||
'params': {'auto_param': True}}, | |||
{'method': 'Shear', | |||
'params': {'auto_param': True}}, | |||
{'method': 'FGSM', | |||
'params': {'eps': 0.3, 'alpha': 0.1}} | |||
] | |||
# get training data | |||
data_list = "./MNIST_unzip/train" | |||
@@ -59,7 +67,7 @@ def test_lenet_mnist_fuzzing(): | |||
train_images = np.concatenate(train_images, axis=0) | |||
# initialize fuzz test with training dataset | |||
model_coverage_test = ModelCoverageMetrics(model, 1000, 10, train_images) | |||
model_coverage_test = ModelCoverageMetrics(model, 10, 1000, train_images) | |||
# fuzz test with original test data | |||
# get test data | |||
@@ -102,8 +102,9 @@ class Fuzzer: | |||
self._target_model = check_model('model', target_model, Model) | |||
train_dataset = check_numpy_param('train_dataset', train_dataset) | |||
self._coverage_metrics = ModelCoverageMetrics(target_model, | |||
neuron_num, | |||
segmented_num, | |||
neuron_num, train_dataset) | |||
train_dataset) | |||
# Allowed mutate strategies so far. | |||
self._strategies = {'Contrast': Contrast, 'Brightness': Brightness, | |||
'Blur': Blur, 'Noise': Noise, 'Translate': Translate, | |||
@@ -190,11 +191,6 @@ class Fuzzer: | |||
eval_metrics_ = [] | |||
avaliable_metrics = ['accuracy', 'attack_success_rate', 'kmnc', 'nbc', 'snac'] | |||
for elem in eval_metrics: | |||
if not isinstance(elem, str): | |||
msg = 'the type of metric in list `eval_metrics` must be str, but got {}.' \ | |||
.format(type(elem)) | |||
LOGGER.error(TAG, msg) | |||
raise TypeError(msg) | |||
if elem not in avaliable_metrics: | |||
msg = 'metric in list `eval_metrics` must be in {}, but got {}.' \ | |||
.format(avaliable_metrics, elem) | |||
@@ -43,8 +43,8 @@ class ModelCoverageMetrics: | |||
Args: | |||
model (Model): The pre-trained model which waiting for testing. | |||
segmented_num (int): The number of segmented sections of neurons' output intervals. | |||
neuron_num (int): The number of testing neurons. | |||
segmented_num (int): The number of segmented sections of neurons' output intervals. | |||
train_dataset (numpy.ndarray): Training dataset used for determine | |||
the neurons' output boundaries. | |||
@@ -56,14 +56,14 @@ class ModelCoverageMetrics: | |||
>>> train_images = np.random.random((10000, 1, 32, 32)).astype(np.float32) | |||
>>> test_images = np.random.random((5000, 1, 32, 32)).astype(np.float32) | |||
>>> model = Model(net) | |||
>>> model_fuzz_test = ModelCoverageMetrics(model, 10000, 10, train_images) | |||
>>> model_fuzz_test = ModelCoverageMetrics(model, 10, 1000, train_images) | |||
>>> model_fuzz_test.calculate_coverage(test_images) | |||
>>> print('KMNC of this test is : %s', model_fuzz_test.get_kmnc()) | |||
>>> print('NBC of this test is : %s', model_fuzz_test.get_nbc()) | |||
>>> print('SNAC of this test is : %s', model_fuzz_test.get_snac()) | |||
""" | |||
def __init__(self, model, segmented_num, neuron_num, train_dataset): | |||
def __init__(self, model, neuron_num, segmented_num, train_dataset): | |||
self._model = check_model('model', model, Model) | |||
self._segmented_num = check_int_positive('segmented_num', segmented_num) | |||
self._neuron_num = check_int_positive('neuron_num', neuron_num) | |||
@@ -71,7 +71,7 @@ def test_lenet_mnist_coverage_cpu(): | |||
# initialize fuzz test with training dataset | |||
training_data = (np.random.random((10000, 10))*20).astype(np.float32) | |||
model_fuzz_test = ModelCoverageMetrics(model, 10000, 10, training_data) | |||
model_fuzz_test = ModelCoverageMetrics(model, 10, 1000, training_data) | |||
# fuzz test with original test data | |||
# get test data | |||
@@ -105,7 +105,7 @@ def test_lenet_mnist_coverage_ascend(): | |||
# initialize fuzz test with training dataset | |||
training_data = (np.random.random((10000, 10))*20).astype(np.float32) | |||
model_fuzz_test = ModelCoverageMetrics(model, 10000, 10, training_data) | |||
model_fuzz_test = ModelCoverageMetrics(model, 10, 1000, training_data) | |||
# fuzz test with original test data | |||
# get test data | |||
@@ -102,7 +102,7 @@ def test_fuzzing_ascend(): | |||
] | |||
# initialize fuzz test with training dataset | |||
train_images = np.random.rand(32, 1, 32, 32).astype(np.float32) | |||
model_coverage_test = ModelCoverageMetrics(model, 1000, 10, train_images) | |||
model_coverage_test = ModelCoverageMetrics(model, 10, 1000, train_images) | |||
# fuzz test with original test data | |||
# get test data | |||
@@ -148,7 +148,7 @@ def test_fuzzing_cpu(): | |||
] | |||
# initialize fuzz test with training dataset | |||
train_images = np.random.rand(32, 1, 32, 32).astype(np.float32) | |||
model_coverage_test = ModelCoverageMetrics(model, 1000, 10, train_images) | |||
model_coverage_test = ModelCoverageMetrics(model, 10, 1000, train_images) | |||
# fuzz test with original test data | |||
# get test data | |||