Browse Source

Fix an issue.

tags/v1.2.1
jin-xiulang 4 years ago
parent
commit
d0d36a5085
4 changed files with 9 additions and 5 deletions
  1. +1
    -1
      examples/model_security/model_attacks/black_box/mnist_attack_pointwise.py
  2. +1
    -0
      examples/model_security/model_defenses/mnist_evaluation.py
  3. +1
    -0
      examples/model_security/model_defenses/mnist_similarity_detector.py
  4. +6
    -4
      mindarmour/adv_robustness/attacks/deep_fool.py

+ 1
- 1
examples/model_security/model_attacks/black_box/mnist_attack_pointwise.py View File

@@ -110,7 +110,7 @@ def test_pointwise_attack_on_mnist():
test_labels_onehot = np.eye(10)[true_labels]
attack_evaluate = AttackEvaluate(np.concatenate(test_images),
test_labels_onehot, adv_data,
adv_preds, targeted=is_target,
np.array(adv_preds), targeted=is_target,
target_label=targeted_labels)
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s',
attack_evaluate.mis_classification_rate())


+ 1
- 0
examples/model_security/model_defenses/mnist_evaluation.py View File

@@ -39,6 +39,7 @@ from examples.common.dataset.data_processing import generate_mnist_dataset
from examples.common.networks.lenet5.lenet5_net import LeNet5
LOGGER = LogUtil.get_instance()
LOGGER.set_level('INFO')
TAG = 'Defense_Evaluate_Example'


+ 1
- 0
examples/model_security/model_defenses/mnist_similarity_detector.py View File

@@ -30,6 +30,7 @@ from examples.common.dataset.data_processing import generate_mnist_dataset
from examples.common.networks.lenet5.lenet5_net import LeNet5

LOGGER = LogUtil.get_instance()
LOGGER.set_level('INFO')
TAG = 'Similarity Detector test'




+ 6
- 4
mindarmour/adv_robustness/attacks/deep_fool.py View File

@@ -152,10 +152,12 @@ class DeepFool(Attack):
Generate adversarial examples based on input samples and original labels.

Args:
inputs (Union[numpy.ndarray, tuple]): Input samples. The format of inputs can be (inputs1, input2, ...) \
or only one array if model_type='detection'
labels (Union[numpy.ndarray, tuple]): Original labels. The format of labels should be \
(gt_boxes, gt_labels) if model_type='detection'.
inputs (Union[numpy.ndarray, tuple]): Input samples. The format of inputs should be numpy.ndarray if
model_type='classification'. The format of inputs can be (input1, input2, ...) or only one array if
model_type='detection'.
labels (Union[numpy.ndarray, tuple]): Targeted labels or ground-truth labels. The format of labels should
be numpy.ndarray if model_type='classification'. The format of labels should be (gt_boxes, gt_labels)
if model_type='detection'.

Returns:
numpy.ndarray, adversarial examples.


Loading…
Cancel
Save