Merge pull request !327 from ZhidanLiu/mastertags/v1.8.0
@@ -27,7 +27,7 @@ from mindspore.nn.optim.momentum import Momentum | |||
from mindarmour.adv_robustness.defenses import AdversarialDefense | |||
from mindarmour.fuzz_testing import Fuzzer | |||
from mindarmour.fuzz_testing import ModelCoverageMetrics | |||
from mindarmour.fuzz_testing import KMultisectionNeuronCoverage | |||
from mindarmour.utils.logger import LogUtil | |||
from examples.common.dataset.data_processing import generate_mnist_dataset | |||
@@ -38,33 +38,66 @@ TAG = 'Fuzz_testing and enhance model' | |||
LOGGER.set_level('INFO') | |||
def split_dataset(image, label, proportion): | |||
""" | |||
Split the generated fuzz data into train and test set. | |||
""" | |||
indices = np.arange(len(image)) | |||
random.shuffle(indices) | |||
train_length = int(len(image) * proportion) | |||
train_image = [image[i] for i in indices[:train_length]] | |||
train_label = [label[i] for i in indices[:train_length]] | |||
test_image = [image[i] for i in indices[:train_length]] | |||
test_label = [label[i] for i in indices[:train_length]] | |||
return train_image, train_label, test_image, test_label | |||
def example_lenet_mnist_fuzzing(): | |||
""" | |||
An example of fuzz testing and then enhance the non-robustness model. | |||
""" | |||
# upload trained network | |||
ckpt_path = '../common/networks/lenet5/trained_ckpt_file/lenet_m1-10_1250.ckpt' | |||
ckpt_path = '../common/networks/lenet5/trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | |||
net = LeNet5() | |||
load_dict = load_checkpoint(ckpt_path) | |||
load_param_into_net(net, load_dict) | |||
model = Model(net) | |||
mutate_config = [{'method': 'Blur', | |||
'params': {'auto_param': [True]}}, | |||
{'method': 'Contrast', | |||
'params': {'auto_param': [True]}}, | |||
{'method': 'Translate', | |||
'params': {'auto_param': [True]}}, | |||
{'method': 'Brightness', | |||
'params': {'auto_param': [True]}}, | |||
{'method': 'Noise', | |||
'params': {'auto_param': [True]}}, | |||
{'method': 'Scale', | |||
'params': {'auto_param': [True]}}, | |||
{'method': 'Shear', | |||
'params': {'auto_param': [True]}}, | |||
{'method': 'FGSM', | |||
'params': {'eps': [0.3, 0.2, 0.4], 'alpha': [0.1]}} | |||
] | |||
mutate_config = [ | |||
{'method': 'GaussianBlur', | |||
'params': {'ksize': [1, 2, 3, 5], 'auto_param': [True, False]}}, | |||
{'method': 'MotionBlur', | |||
'params': {'degree': [1, 2, 5], 'angle': [45, 10, 100, 140, 210, 270, 300], 'auto_param': [True]}}, | |||
{'method': 'GradientBlur', | |||
'params': {'point': [[10, 10]], 'auto_param': [True]}}, | |||
{'method': 'UniformNoise', | |||
'params': {'factor': [0.1, 0.2, 0.3], 'auto_param': [False, True]}}, | |||
{'method': 'GaussianNoise', | |||
'params': {'factor': [0.1, 0.2, 0.3], 'auto_param': [False, True]}}, | |||
{'method': 'SaltAndPepperNoise', | |||
'params': {'factor': [0.1, 0.2, 0.3], 'auto_param': [False, True]}}, | |||
{'method': 'NaturalNoise', | |||
'params': {'ratio': [0.1], 'k_x_range': [(1, 3), (1, 5)], 'k_y_range': [(1, 5)], 'auto_param': [False, True]}}, | |||
{'method': 'Contrast', | |||
'params': {'alpha': [0.5, 1, 1.5], 'beta': [-10, 0, 10], 'auto_param': [False, True]}}, | |||
{'method': 'GradientLuminance', | |||
'params': {'color_start': [(0, 0, 0)], 'color_end': [(255, 255, 255)], 'start_point': [(10, 10)], | |||
'scope': [0.5], 'pattern': ['light'], 'bright_rate': [0.3], 'mode': ['circle'], | |||
'auto_param': [False, True]}}, | |||
{'method': 'Translate', | |||
'params': {'x_bias': [0, 0.05, -0.05], 'y_bias': [0, -0.05, 0.05], 'auto_param': [False, True]}}, | |||
{'method': 'Scale', | |||
'params': {'factor_x': [1, 0.9], 'factor_y': [1, 0.9], 'auto_param': [False, True]}}, | |||
{'method': 'Shear', | |||
'params': {'factor': [0.2, 0.1], 'direction': ['horizontal', 'vertical'], 'auto_param': [False, True]}}, | |||
{'method': 'Rotate', | |||
'params': {'angle': [20, 90], 'auto_param': [False, True]}}, | |||
{'method': 'Perspective', | |||
'params': {'ori_pos': [[[0, 0], [0, 800], [800, 0], [800, 800]]], | |||
'dst_pos': [[[50, 0], [0, 800], [780, 0], [800, 800]]], 'auto_param': [False, True]}}, | |||
{'method': 'Curve', | |||
'params': {'curves': [5], 'depth': [2], 'mode': ['vertical'], 'auto_param': [False, True]}}, | |||
{'method': 'FGSM', | |||
'params': {'eps': [0.3, 0.2, 0.4], 'alpha': [0.1], 'bounds': [(0, 1)]}}] | |||
# get training data | |||
data_list = "../common/dataset/MNIST/train" | |||
@@ -75,49 +108,36 @@ def example_lenet_mnist_fuzzing(): | |||
images = data[0].astype(np.float32) | |||
train_images.append(images) | |||
train_images = np.concatenate(train_images, axis=0) | |||
neuron_num = 10 | |||
segmented_num = 1000 | |||
# initialize fuzz test with training dataset | |||
model_coverage_test = ModelCoverageMetrics(model, neuron_num, segmented_num, train_images) | |||
segmented_num = 100 | |||
# fuzz test with original test data | |||
# get test data | |||
data_list = "../common/dataset/MNIST/test" | |||
batch_size = 32 | |||
init_samples = 5000 | |||
max_iters = 50000 | |||
batch_size = batch_size | |||
init_samples = 50 | |||
max_iters = 500 | |||
mutate_num_per_seed = 10 | |||
ds = generate_mnist_dataset(data_list, batch_size, num_samples=init_samples, | |||
sparse=False) | |||
ds = generate_mnist_dataset(data_list, batch_size=batch_size, num_samples=init_samples, sparse=False) | |||
test_images = [] | |||
test_labels = [] | |||
for data in ds.create_tuple_iterator(output_numpy=True): | |||
images = data[0].astype(np.float32) | |||
labels = data[1] | |||
test_images.append(images) | |||
test_labels.append(labels) | |||
test_images.append(data[0].astype(np.float32)) | |||
test_labels.append(data[1]) | |||
test_images = np.concatenate(test_images, axis=0) | |||
test_labels = np.concatenate(test_labels, axis=0) | |||
initial_seeds = [] | |||
coverage = KMultisectionNeuronCoverage(model, train_images, segmented_num=segmented_num, incremental=True) | |||
kmnc = coverage.get_metrics(test_images[:100]) | |||
print('kmnc: ', kmnc) | |||
# make initial seeds | |||
initial_seeds = [] | |||
for img, label in zip(test_images, test_labels): | |||
initial_seeds.append([img, label]) | |||
model_coverage_test.calculate_coverage( | |||
np.array(test_images[:100]).astype(np.float32)) | |||
LOGGER.info(TAG, 'KMNC of test dataset before fuzzing is : %s', | |||
model_coverage_test.get_kmnc()) | |||
LOGGER.info(TAG, 'NBC of test dataset before fuzzing is : %s', | |||
model_coverage_test.get_nbc()) | |||
LOGGER.info(TAG, 'SNAC of test dataset before fuzzing is : %s', | |||
model_coverage_test.get_snac()) | |||
model_fuzz_test = Fuzzer(model, train_images, 10, 1000) | |||
model_fuzz_test = Fuzzer(model) | |||
gen_samples, gt, _, _, metrics = model_fuzz_test.fuzzing(mutate_config, | |||
initial_seeds, | |||
eval_metrics='auto', | |||
initial_seeds, coverage, | |||
evaluate=True, | |||
max_iters=max_iters, | |||
mutate_num_per_seed=mutate_num_per_seed) | |||
@@ -125,24 +145,10 @@ def example_lenet_mnist_fuzzing(): | |||
for key in metrics: | |||
LOGGER.info(TAG, key + ': %s', metrics[key]) | |||
def split_dataset(image, label, proportion): | |||
""" | |||
Split the generated fuzz data into train and test set. | |||
""" | |||
indices = np.arange(len(image)) | |||
random.shuffle(indices) | |||
train_length = int(len(image) * proportion) | |||
train_image = [image[i] for i in indices[:train_length]] | |||
train_label = [label[i] for i in indices[:train_length]] | |||
test_image = [image[i] for i in indices[:train_length]] | |||
test_label = [label[i] for i in indices[:train_length]] | |||
return train_image, train_label, test_image, test_label | |||
train_image, train_label, test_image, test_label = split_dataset( | |||
gen_samples, gt, 0.7) | |||
train_image, train_label, test_image, test_label = split_dataset(gen_samples, gt, 0.7) | |||
# load model B and test it on the test set | |||
ckpt_path = '../common/networks/lenet5/trained_ckpt_file/lenet_m2-10_1250.ckpt' | |||
ckpt_path = '../common/networks/lenet5/trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | |||
net = LeNet5() | |||
load_dict = load_checkpoint(ckpt_path) | |||
load_param_into_net(net, load_dict) | |||
@@ -154,12 +160,11 @@ def example_lenet_mnist_fuzzing(): | |||
# enhense model robustness | |||
lr = 0.001 | |||
momentum = 0.9 | |||
loss_fn = SoftmaxCrossEntropyWithLogits(Sparse=True) | |||
loss_fn = SoftmaxCrossEntropyWithLogits(sparse=True) | |||
optimizer = Momentum(net.trainable_params(), lr, momentum) | |||
adv_defense = AdversarialDefense(net, loss_fn, optimizer) | |||
adv_defense.batch_defense(np.array(train_image).astype(np.float32), | |||
np.argmax(train_label, axis=1).astype(np.int32)) | |||
adv_defense.batch_defense(np.array(train_image).astype(np.float32), np.argmax(train_label, axis=1).astype(np.int32)) | |||
preds_en = net(Tensor(test_image, dtype=mindspore.float32)).asnumpy() | |||
acc_en = np.sum(np.argmax(preds_en, axis=1) == np.argmax(test_label, axis=1)) / len(test_label) | |||
print('Accuracy of enhensed model on test set is ', acc_en) | |||
@@ -167,5 +172,5 @@ def example_lenet_mnist_fuzzing(): | |||
if __name__ == '__main__': | |||
# device_target can be "CPU", "GPU" or "Ascend" | |||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||
example_lenet_mnist_fuzzing() |
@@ -35,24 +35,50 @@ def test_lenet_mnist_fuzzing(): | |||
load_dict = load_checkpoint(ckpt_path) | |||
load_param_into_net(net, load_dict) | |||
model = Model(net) | |||
mutate_config = [{'method': 'Blur', | |||
'params': {'radius': [0.1, 0.2, 0.3], | |||
'auto_param': [True, False]}}, | |||
{'method': 'Contrast', | |||
'params': {'auto_param': [True]}}, | |||
{'method': 'Translate', | |||
'params': {'auto_param': [True]}}, | |||
{'method': 'Brightness', | |||
'params': {'auto_param': [True]}}, | |||
{'method': 'Noise', | |||
'params': {'auto_param': [True]}}, | |||
{'method': 'Scale', | |||
'params': {'auto_param': [True]}}, | |||
{'method': 'Shear', | |||
'params': {'auto_param': [True]}}, | |||
{'method': 'FGSM', | |||
'params': {'eps': [0.3, 0.2, 0.4], 'alpha': [0.1], 'bounds': [(0, 1)]}} | |||
] | |||
mutate_config = [ | |||
{'method': 'GaussianBlur', | |||
'params': {'ksize': [1, 2, 3, 5], | |||
'auto_param': [True, False]}}, | |||
{'method': 'MotionBlur', | |||
'params': {'degree': [1, 2, 5], 'angle': [45, 10, 100, 140, 210, 270, 300], 'auto_param': [True]}}, | |||
{'method': 'GradientBlur', | |||
'params': {'point': [[10, 10]], 'auto_param': [True]}}, | |||
{'method': 'UniformNoise', | |||
'params': {'factor': [0.1, 0.2, 0.3], 'auto_param': [False, True]}}, | |||
{'method': 'GaussianNoise', | |||
'params': {'factor': [0.1, 0.2, 0.3], 'auto_param': [False, True]}}, | |||
{'method': 'SaltAndPepperNoise', | |||
'params': {'factor': [0.1, 0.2, 0.3], 'auto_param': [False, True]}}, | |||
{'method': 'NaturalNoise', | |||
'params': {'ratio': [0.1, 0.2, 0.3], 'k_x_range': [(1, 3), (1, 5)], 'k_y_range': [(1, 5)], | |||
'auto_param': [False, True]}}, | |||
{'method': 'Contrast', | |||
'params': {'alpha': [0.5, 1, 1.5], 'beta': [-10, 0, 10], 'auto_param': [False, True]}}, | |||
{'method': 'GradientLuminance', | |||
'params': {'color_start': [(0, 0, 0)], 'color_end': [(255, 255, 255)], 'start_point': [(10, 10)], | |||
'scope': [0.5], 'pattern': ['light'], 'bright_rate': [0.3], 'mode': ['circle'], | |||
'auto_param': [False, True]}}, | |||
{'method': 'Translate', | |||
'params': {'x_bias': [0, 0.05, -0.05], 'y_bias': [0, -0.05, 0.05], 'auto_param': [False, True]}}, | |||
{'method': 'Scale', | |||
'params': {'factor_x': [1, 0.9], 'factor_y': [1, 0.9], 'auto_param': [False, True]}}, | |||
{'method': 'Shear', | |||
'params': {'factor': [0.2, 0.1], 'direction': ['horizontal', 'vertical'], 'auto_param': [False, True]}}, | |||
{'method': 'Rotate', | |||
'params': {'angle': [20, 90], 'auto_param': [False, True]}}, | |||
{'method': 'Perspective', | |||
'params': {'ori_pos': [[[0, 0], [0, 800], [800, 0], [800, 800]]], | |||
'dst_pos': [[[50, 0], [0, 800], [780, 0], [800, 800]]], 'auto_param': [False, True]}}, | |||
{'method': 'Curve', | |||
'params': {'curves': [5], 'depth': [2], 'mode': ['vertical'], 'auto_param': [False, True]}}, | |||
{'method': 'FGSM', | |||
'params': {'eps': [0.3, 0.2, 0.4], 'alpha': [0.1], 'bounds': [(0, 1)]}}, | |||
{'method': 'PGD', | |||
'params': {'eps': [0.1, 0.2, 0.4], 'eps_iter': [0.05, 0.1], 'nb_iter': [1, 3]}}, | |||
{'method': 'MDIIM', | |||
'params': {'eps': [0.1, 0.2, 0.4], 'prob': [0.5, 0.1], | |||
'norm_level': [1, 2, '1', '2', 'l1', 'l2', 'inf', 'np.inf', 'linf']}} | |||
] | |||
# get training data | |||
data_list = "../common/dataset/MNIST/train" | |||
@@ -88,7 +114,10 @@ def test_lenet_mnist_fuzzing(): | |||
print('KMNC of initial seeds is: ', kmnc) | |||
initial_seeds = initial_seeds[:100] | |||
model_fuzz_test = Fuzzer(model) | |||
_, _, _, _, metrics = model_fuzz_test.fuzzing(mutate_config, initial_seeds, coverage, evaluate=True, max_iters=10, | |||
_, _, _, _, metrics = model_fuzz_test.fuzzing(mutate_config, | |||
initial_seeds, coverage, | |||
evaluate=True, | |||
max_iters=10, | |||
mutate_num_per_seed=20) | |||
if metrics: | |||
@@ -24,10 +24,11 @@ from mindspore import nn | |||
from mindarmour.utils._check_param import check_model, check_numpy_param, check_param_multi_types, check_norm_level, \ | |||
check_param_in_range, check_param_type, check_int_positive, check_param_bounds | |||
from mindarmour.utils.logger import LogUtil | |||
from ..adv_robustness.attacks import FastGradientSignMethod, \ | |||
from mindarmour.adv_robustness.attacks import FastGradientSignMethod, \ | |||
MomentumDiverseInputIterativeMethod, ProjectedGradientDescent | |||
from .image_transform import Contrast, Brightness, Blur, \ | |||
Noise, Translate, Scale, Shear, Rotate | |||
from mindarmour.natural_robustness.transform.image import GaussianBlur, MotionBlur, GradientBlur, UniformNoise,\ | |||
GaussianNoise, SaltAndPepperNoise, NaturalNoise, Contrast, GradientLuminance, Translate, Scale, Shear, Rotate, \ | |||
Perspective, Curve | |||
from .model_coverage_metrics import CoverageMetrics, KMultisectionNeuronCoverage | |||
LOGGER = LogUtil.get_instance() | |||
@@ -104,17 +105,79 @@ class Fuzzer: | |||
target_model (Model): Target fuzz model. | |||
Examples: | |||
>>> import numpy as np | |||
>>> from mindspore import context | |||
>>> from mindspore import nn | |||
>>> from mindspore.common.initializer import TruncatedNormal | |||
>>> from mindspore.ops import operations as P | |||
>>> from mindspore.train import Model | |||
>>> from mindspore.ops import TensorSummary | |||
>>> from mindarmour.fuzz_testing import Fuzzer | |||
>>> from mindarmour.fuzz_testing import KMultisectionNeuronCoverage | |||
>>> | |||
>>> class Net(nn.Cell): | |||
>>> def __init__(self): | |||
>>> super(Net, self).__init__() | |||
>>> self.conv1 = nn.Conv2d(1, 6, 5, padding=0, weight_init=TruncatedNormal(0.02), pad_mode="valid") | |||
>>> self.conv2 = nn.Conv2d(6, 16, 5, padding=0, weight_init=TruncatedNormal(0.02), pad_mode="valid") | |||
>>> self.fc1 = nn.Dense(16 * 5 * 5, 120, TruncatedNormal(0.02), TruncatedNormal(0.02)) | |||
>>> self.fc2 = nn.Dense(120, 84, TruncatedNormal(0.02), TruncatedNormal(0.02)) | |||
>>> self.fc3 = nn.Dense(84, 10, TruncatedNormal(0.02), TruncatedNormal(0.02)) | |||
>>> self.relu = nn.ReLU() | |||
>>> self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) | |||
>>> self.reshape = P.Reshape() | |||
>>> self.summary = TensorSummary() | |||
>>> | |||
>>> def construct(self, x): | |||
>>> x = self.conv1(x) | |||
>>> x = self.relu(x) | |||
>>> self.summary('conv1', x) | |||
>>> x = self.max_pool2d(x) | |||
>>> x = self.conv2(x) | |||
>>> x = self.relu(x) | |||
>>> self.summary('conv2', x) | |||
>>> x = self.max_pool2d(x) | |||
>>> x = self.reshape(x, (-1, 16 * 5 * 5)) | |||
>>> x = self.fc1(x) | |||
>>> x = self.relu(x) | |||
>>> self.summary('fc1', x) | |||
>>> x = self.fc2(x) | |||
>>> x = self.relu(x) | |||
>>> self.summary('fc2', x) | |||
>>> x = self.fc3(x) | |||
>>> self.summary('fc3', x) | |||
>>> return x | |||
>>> | |||
>>> net = Net() | |||
>>> model = Model(net) | |||
>>> mutate_config = [{'method': 'Blur', | |||
... 'params': {'auto_param': [True]}}, | |||
>>> mutate_config = [{'method': 'GaussianBlur', | |||
... 'params': {'ksize': [1, 2, 3, 5], 'auto_param': [True, False]}}, | |||
... {'method': 'MotionBlur', | |||
... 'params': {'degree': [1, 2, 5], 'angle': [45, 10, 100, 140, 210, 270, 300], | |||
... 'auto_param': [True]}}, | |||
... {'method': 'UniformNoise', | |||
... 'params': {'factor': [0.1, 0.2, 0.3], 'auto_param': [False, True]}}, | |||
... {'method': 'GaussianNoise', | |||
... 'params': {'factor': [0.1, 0.2, 0.3], 'auto_param': [False, True]}}, | |||
... {'method': 'Contrast', | |||
... 'params': {'factor': [2]}}, | |||
... {'method': 'Translate', | |||
... 'params': {'x_bias': [0.1, 0.2], 'y_bias': [0.2]}}, | |||
... 'params': {'alpha': [0.5, 1, 1.5], 'beta': [-10, 0, 10], 'auto_param': [False, True]}}, | |||
... {'method': 'Rotate', | |||
... 'params': {'angle': [20, 90], 'auto_param': [False, True]}}, | |||
... {'method': 'FGSM', | |||
... 'params': {'eps': [0.1, 0.2, 0.3], 'alpha': [0.1]}}] | |||
>>> nc = KMultisectionNeuronCoverage(model, train_images, segmented_num=100) | |||
... 'params': {'eps': [0.3, 0.2, 0.4], 'alpha': [0.1], 'bounds': [(0, 1)]}}] | |||
>>> batch_size = 8 | |||
>>> num_classe = 10 | |||
>>> train_images = np.random.rand(32, 1, 32, 32).astype(np.float32) | |||
>>> test_images = np.random.rand(batch_size, 1, 32, 32).astype(np.float32) | |||
>>> test_labels = np.random.randint(num_classe, size=batch_size).astype(np.int32) | |||
>>> test_labels = (np.eye(num_classe)[test_labels]).astype(np.float32) | |||
>>> initial_seeds = [] | |||
>>> # make initial seeds | |||
>>> for img, label in zip(test_images, test_labels): | |||
>>> initial_seeds.append([img, label]) | |||
>>> initial_seeds = initial_seeds[:10] | |||
>>> nc = KMultisectionNeuronCoverage(model, train_images, segmented_num=100, incremental=True) | |||
>>> model_fuzz_test = Fuzzer(model) | |||
>>> samples, gt_labels, preds, strategies, metrics = model_fuzz_test.fuzzing(mutate_config, initial_seeds, | |||
... nc, max_iters=100) | |||
@@ -125,18 +188,26 @@ class Fuzzer: | |||
# Allowed mutate strategies so far. | |||
self._strategies = {'Contrast': Contrast, | |||
'Brightness': Brightness, | |||
'Blur': Blur, | |||
'Noise': Noise, | |||
'GradientLuminance': GradientLuminance, | |||
'GaussianBlur': GaussianBlur, | |||
'MotionBlur': MotionBlur, | |||
'GradientBlur': GradientBlur, | |||
'UniformNoise': UniformNoise, | |||
'GaussianNoise': GaussianNoise, | |||
'SaltAndPepperNoise': SaltAndPepperNoise, | |||
'NaturalNoise': NaturalNoise, | |||
'Translate': Translate, | |||
'Scale': Scale, | |||
'Shear': Shear, | |||
'Rotate': Rotate, | |||
'Perspective': Perspective, | |||
'Curve': Curve, | |||
'FGSM': FastGradientSignMethod, | |||
'PGD': ProjectedGradientDescent, | |||
'MDIIM': MomentumDiverseInputIterativeMethod} | |||
self._affine_trans_list = ['Translate', 'Scale', 'Shear', 'Rotate'] | |||
self._pixel_value_trans_list = ['Contrast', 'Brightness', 'Blur', 'Noise'] | |||
self._affine_trans_list = ['Translate', 'Scale', 'Shear', 'Rotate', 'Perspective', 'Curve'] | |||
self._pixel_value_trans_list = ['Contrast', 'GradientLuminance', 'GaussianBlur', 'MotionBlur', 'GradientBlur', | |||
'UniformNoise', 'GaussianNoise', 'SaltAndPepperNoise', 'NaturalNoise'] | |||
self._attacks_list = ['FGSM', 'PGD', 'MDIIM'] | |||
self._attack_param_checklists = { | |||
'FGSM': {'eps': {'dtype': [float], 'range': [0, 1]}, | |||
@@ -144,10 +215,11 @@ class Fuzzer: | |||
'bounds': {'dtype': [tuple, list]}}, | |||
'PGD': {'eps': {'dtype': [float], 'range': [0, 1]}, | |||
'eps_iter': {'dtype': [float], 'range': [0, 1]}, | |||
'nb_iter': {'dtype': [int], 'range': [0, 100000]}, | |||
'nb_iter': {'dtype': [int]}, | |||
'bounds': {'dtype': [tuple, list]}}, | |||
'MDIIM': {'eps': {'dtype': [float], 'range': [0, 1]}, | |||
'norm_level': {'dtype': [str, int], 'range': [1, 2, '1', '2', 'l1', 'l2', 'inf', 'np.inf']}, | |||
'norm_level': {'dtype': [str, int], | |||
'range': [1, 2, '1', '2', 'l1', 'l2', 'inf', 'linf', 'np.inf']}, | |||
'prob': {'dtype': [float], 'range': [0, 1]}, | |||
'bounds': {'dtype': [tuple, list]}}} | |||
@@ -157,18 +229,26 @@ class Fuzzer: | |||
Args: | |||
mutate_config (list): Mutate configs. The format is | |||
[{'method': 'Blur', | |||
'params': {'radius': [0.1, 0.2], 'auto_param': [True, False]}}, | |||
{'method': 'Contrast', | |||
'params': {'factor': [1, 1.5, 2]}}, | |||
{'method': 'FGSM', | |||
'params': {'eps': [0.3, 0.2, 0.4], 'alpha': [0.1]}}, | |||
...]. | |||
[{'method': 'GaussianBlur', | |||
'params': {'ksize': [1, 2, 3, 5], 'auto_param': [True, False]}}, | |||
{'method': 'UniformNoise', | |||
'params': {'factor': [0.1, 0.2, 0.3], 'auto_param': [False, True]}}, | |||
{'method': 'GaussianNoise', | |||
'params': {'factor': [0.1, 0.2, 0.3], 'auto_param': [False, True]}}, | |||
{'method': 'Contrast', | |||
'params': {'alpha': [0.5, 1, 1.5], 'beta': [-10, 0, 10], 'auto_param': [False, True]}}, | |||
{'method': 'Rotate', | |||
'params': {'angle': [20, 90], 'auto_param': [False, True]}}, | |||
{'method': 'FGSM', | |||
'params': {'eps': [0.3, 0.2, 0.4], 'alpha': [0.1], 'bounds': [(0, 1)]}}] | |||
...]. | |||
The supported methods list is in `self._strategies`, and the params of each method must within the | |||
range of optional parameters. Supported methods are grouped in three types: Firstly, pixel value based | |||
transform methods include: 'Contrast', 'Brightness', 'Blur' and 'Noise'. Secondly, affine transform | |||
methods include: 'Translate', 'Scale', 'Shear' and 'Rotate'. Thirdly, attack methods include: 'FGSM', | |||
'PGD' and 'MDIIM'. `mutate_config` must have method in the type of pixel value based transform methods. | |||
'PGD' and 'MDIIM'. 'FGSM', 'PGD' and 'MDIIM'. are abbreviations of FastGradientSignMethod, | |||
ProjectedGradientDescent and MomentumDiverseInputIterativeMethod. | |||
`mutate_config` must have method in the type of pixel value based transform methods. | |||
The way of setting parameters for first and second type methods can be seen in | |||
'mindarmour/fuzz_testing/image_transform.py'. For third type methods, the optional parameters refer to | |||
`self._attack_param_checklists`. | |||
@@ -278,7 +358,6 @@ class Fuzzer: | |||
if only_pixel_trans: | |||
while strategy['method'] not in self._pixel_value_trans_list: | |||
strategy = choice(mutate_config) | |||
transform = mutates[strategy['method']] | |||
params = strategy['params'] | |||
method = strategy['method'] | |||
selected_param = {} | |||
@@ -290,9 +369,10 @@ class Fuzzer: | |||
shear_keys = selected_param.keys() | |||
if 'factor_x' in shear_keys and 'factor_y' in shear_keys: | |||
selected_param[choice(['factor_x', 'factor_y'])] = 0 | |||
transform.set_params(**selected_param) | |||
mutate_sample = transform.transform(seed[0]) | |||
transform = mutates[strategy['method']](**selected_param) | |||
mutate_sample = transform(seed[0]) | |||
else: | |||
transform = mutates[strategy['method']] | |||
for param_name in selected_param: | |||
transform.__setattr__('_' + str(param_name), selected_param[param_name]) | |||
mutate_sample = transform.generate(np.array([seed[0].astype(np.float32)]), np.array([seed[1]]))[0] | |||
@@ -360,6 +440,8 @@ class Fuzzer: | |||
_ = check_param_bounds('bounds', param_value) | |||
elif param_name == 'norm_level': | |||
_ = check_norm_level(param_value) | |||
elif param_name == 'nb_iter': | |||
_ = check_int_positive(param_name, param_value) | |||
else: | |||
allow_type = self._attack_param_checklists[method][param_name]['dtype'] | |||
allow_range = self._attack_param_checklists[method][param_name]['range'] | |||
@@ -372,7 +454,8 @@ class Fuzzer: | |||
for mutate in mutate_config: | |||
method = mutate['method'] | |||
if method not in self._attacks_list: | |||
mutates[method] = self._strategies[method]() | |||
# mutates[method] = self._strategies[method]() | |||
mutates[method] = self._strategies[method] | |||
else: | |||
network = self._target_model._network | |||
loss_fn = self._target_model._loss_fn | |||
@@ -414,7 +497,6 @@ class Fuzzer: | |||
else: | |||
attack_success_rate = None | |||
metrics_report['Attack_success_rate'] = attack_success_rate | |||
metrics_report['Coverage_metrics'] = coverage.get_metrics(fuzz_samples) | |||
return metrics_report |
@@ -1,609 +0,0 @@ | |||
# Copyright 2019 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
""" | |||
Image transform | |||
""" | |||
import numpy as np | |||
from PIL import Image, ImageEnhance, ImageFilter | |||
from mindspore.dataset.vision.py_transforms_util import is_numpy, \ | |||
to_pil, hwc_to_chw | |||
from mindarmour.utils._check_param import check_param_multi_types, check_param_in_range, check_numpy_param | |||
from mindarmour.utils.logger import LogUtil | |||
LOGGER = LogUtil.get_instance() | |||
TAG = 'Image Transformation' | |||
def chw_to_hwc(img): | |||
""" | |||
Transpose the input image; shape (C, H, W) to shape (H, W, C). | |||
Args: | |||
img (numpy.ndarray): Image to be converted. | |||
Returns: | |||
img (numpy.ndarray), Converted image. | |||
""" | |||
if is_numpy(img): | |||
return img.transpose(1, 2, 0).copy() | |||
raise TypeError('img should be numpy.ndarray. Got {}'.format(type(img))) | |||
def is_hwc(img): | |||
""" | |||
Check if the input image is shape (H, W, C). | |||
Args: | |||
img (numpy.ndarray): Image to be checked. | |||
Returns: | |||
Bool, True if input is shape (H, W, C). | |||
""" | |||
if is_numpy(img): | |||
img_shape = np.shape(img) | |||
if img_shape[2] == 3 and img_shape[1] > 3 and img_shape[0] > 3: | |||
return True | |||
return False | |||
raise TypeError('img should be numpy.ndarray. Got {}'.format(type(img))) | |||
def is_chw(img): | |||
""" | |||
Check if the input image is shape (H, W, C). | |||
Args: | |||
img (numpy.ndarray): Image to be checked. | |||
Returns: | |||
Bool, True if input is shape (H, W, C). | |||
""" | |||
if is_numpy(img): | |||
img_shape = np.shape(img) | |||
if img_shape[0] == 3 and img_shape[1] > 3 and img_shape[2] > 3: | |||
return True | |||
return False | |||
raise TypeError('img should be numpy.ndarray. Got {}'.format(type(img))) | |||
def is_rgb(img): | |||
""" | |||
Check if the input image is RGB. | |||
Args: | |||
img (numpy.ndarray): Image to be checked. | |||
Returns: | |||
Bool, True if input is RGB. | |||
""" | |||
if is_numpy(img): | |||
img_shape = np.shape(img) | |||
if len(np.shape(img)) == 3 and (img_shape[0] == 3 or img_shape[2] == 3): | |||
return True | |||
return False | |||
raise TypeError('img should be numpy.ndarray. Got {}'.format(type(img))) | |||
def is_normalized(img): | |||
""" | |||
Check if the input image is normalized between 0 to 1. | |||
Args: | |||
img (numpy.ndarray): Image to be checked. | |||
Returns: | |||
Bool, True if input is normalized between 0 to 1. | |||
""" | |||
if is_numpy(img): | |||
minimal = np.min(img) | |||
maximun = np.max(img) | |||
if minimal >= 0 and maximun <= 1: | |||
return True | |||
return False | |||
raise TypeError('img should be Numpy array. Got {}'.format(type(img))) | |||
class ImageTransform: | |||
""" | |||
The abstract base class for all image transform classes. | |||
""" | |||
def __init__(self): | |||
pass | |||
def _check(self, image): | |||
""" Check image format. If input image is RGB and its shape | |||
is (C, H, W), it will be transposed to (H, W, C). If the value | |||
of the image is not normalized , it will be normalized between 0 to 1.""" | |||
rgb = is_rgb(image) | |||
chw = False | |||
gray3dim = False | |||
normalized = is_normalized(image) | |||
if rgb: | |||
chw = is_chw(image) | |||
if chw: | |||
image = chw_to_hwc(image) | |||
else: | |||
image = image | |||
else: | |||
if len(np.shape(image)) == 3: | |||
gray3dim = True | |||
image = image[0] | |||
else: | |||
image = image | |||
if normalized: | |||
image = image*255 | |||
return rgb, chw, normalized, gray3dim, np.uint8(image) | |||
def _original_format(self, image, chw, normalized, gray3dim): | |||
""" Return transformed image with original format. """ | |||
if not is_numpy(image): | |||
image = np.array(image) | |||
if chw: | |||
image = hwc_to_chw(image) | |||
if normalized: | |||
image = image / 255 | |||
if gray3dim: | |||
image = np.expand_dims(image, 0) | |||
return image | |||
def transform(self, image): | |||
pass | |||
class Contrast(ImageTransform): | |||
""" | |||
Contrast of an image. | |||
Args: | |||
factor (Union[float, int]): Control the contrast of an image. If 1.0, | |||
gives the original image. If 0, gives a gray image. Default: 1. | |||
""" | |||
def __init__(self, factor=1): | |||
super(Contrast, self).__init__() | |||
self.set_params(factor) | |||
def set_params(self, factor=1, auto_param=False): | |||
""" | |||
Set contrast parameters. | |||
Args: | |||
factor (Union[float, int]): Control the contrast of an image. If 1.0 | |||
gives the original image. If 0 gives a gray image. Default: 1. | |||
auto_param (bool): True if auto generate parameters. Default: False. | |||
""" | |||
if auto_param: | |||
self.factor = np.random.uniform(-5, 5) | |||
else: | |||
self.factor = check_param_multi_types('factor', factor, [int, float]) | |||
def transform(self, image): | |||
""" | |||
Transform the image. | |||
Args: | |||
image (numpy.ndarray): Original image to be transformed. | |||
Returns: | |||
numpy.ndarray, transformed image. | |||
""" | |||
image = check_numpy_param('image', image) | |||
ori_dtype = image.dtype | |||
_, chw, normalized, gray3dim, image = self._check(image) | |||
image = to_pil(image) | |||
img_contrast = ImageEnhance.Contrast(image) | |||
trans_image = img_contrast.enhance(self.factor) | |||
trans_image = self._original_format(trans_image, chw, normalized, | |||
gray3dim) | |||
return trans_image.astype(ori_dtype) | |||
class Brightness(ImageTransform): | |||
""" | |||
Brightness of an image. | |||
Args: | |||
factor (Union[float, int]): Control the brightness of an image. If 1.0 | |||
gives the original image. If 0 gives a black image. Default: 1. | |||
""" | |||
def __init__(self, factor=1): | |||
super(Brightness, self).__init__() | |||
self.set_params(factor) | |||
def set_params(self, factor=1, auto_param=False): | |||
""" | |||
Set brightness parameters. | |||
Args: | |||
factor (Union[float, int]): Control the brightness of an image. If 1 | |||
gives the original image. If 0 gives a black image. Default: 1. | |||
auto_param (bool): True if auto generate parameters. Default: False. | |||
""" | |||
if auto_param: | |||
self.factor = np.random.uniform(0, 5) | |||
else: | |||
self.factor = check_param_multi_types('factor', factor, [int, float]) | |||
def transform(self, image): | |||
""" | |||
Transform the image. | |||
Args: | |||
image (numpy.ndarray): Original image to be transformed. | |||
Returns: | |||
numpy.ndarray, transformed image. | |||
""" | |||
image = check_numpy_param('image', image) | |||
ori_dtype = image.dtype | |||
_, chw, normalized, gray3dim, image = self._check(image) | |||
image = to_pil(image) | |||
img_contrast = ImageEnhance.Brightness(image) | |||
trans_image = img_contrast.enhance(self.factor) | |||
trans_image = self._original_format(trans_image, chw, normalized, | |||
gray3dim) | |||
return trans_image.astype(ori_dtype) | |||
class Blur(ImageTransform): | |||
""" | |||
Blurs the image using Gaussian blur filter. | |||
Args: | |||
radius(Union[float, int]): Blur radius, 0 means no blur. Default: 0. | |||
""" | |||
def __init__(self, radius=0): | |||
super(Blur, self).__init__() | |||
self.set_params(radius) | |||
def set_params(self, radius=0, auto_param=False): | |||
""" | |||
Set blur parameters. | |||
Args: | |||
radius (Union[float, int]): Blur radius, 0 means no blur. Default: 0. | |||
auto_param (bool): True if auto generate parameters. Default: False. | |||
""" | |||
if auto_param: | |||
self.radius = np.random.uniform(-1.5, 1.5) | |||
else: | |||
self.radius = check_param_multi_types('radius', radius, [int, float]) | |||
def transform(self, image): | |||
""" | |||
Transform the image. | |||
Args: | |||
image (numpy.ndarray): Original image to be transformed. | |||
Returns: | |||
numpy.ndarray, transformed image. | |||
""" | |||
image = check_numpy_param('image', image) | |||
ori_dtype = image.dtype | |||
_, chw, normalized, gray3dim, image = self._check(image) | |||
image = to_pil(image) | |||
trans_image = image.filter(ImageFilter.GaussianBlur(radius=self.radius)) | |||
trans_image = self._original_format(trans_image, chw, normalized, | |||
gray3dim) | |||
return trans_image.astype(ori_dtype) | |||
class Noise(ImageTransform): | |||
""" | |||
Add noise of an image. | |||
Args: | |||
factor (float): factor is the ratio of pixels to add noise. | |||
If 0 gives the original image. Default 0. | |||
""" | |||
def __init__(self, factor=0): | |||
super(Noise, self).__init__() | |||
self.set_params(factor) | |||
def set_params(self, factor=0, auto_param=False): | |||
""" | |||
Set noise parameters. | |||
Args: | |||
factor (Union[float, int]): factor is the ratio of pixels to | |||
add noise. If 0 gives the original image. Default 0. | |||
auto_param (bool): True if auto generate parameters. Default: False. | |||
""" | |||
if auto_param: | |||
self.factor = np.random.uniform(0, 1) | |||
else: | |||
self.factor = check_param_multi_types('factor', factor, [int, float]) | |||
def transform(self, image): | |||
""" | |||
Transform the image. | |||
Args: | |||
image (numpy.ndarray): Original image to be transformed. | |||
Returns: | |||
numpy.ndarray, transformed image. | |||
""" | |||
image = check_numpy_param('image', image) | |||
ori_dtype = image.dtype | |||
_, chw, normalized, gray3dim, image = self._check(image) | |||
noise = np.random.uniform(low=-1, high=1, size=np.shape(image)) | |||
trans_image = np.copy(image) | |||
threshold = 1 - self.factor | |||
trans_image[noise < -threshold] = 0 | |||
trans_image[noise > threshold] = 1 | |||
trans_image = self._original_format(trans_image, chw, normalized, | |||
gray3dim) | |||
return trans_image.astype(ori_dtype) | |||
class Translate(ImageTransform): | |||
""" | |||
Translate an image. | |||
Args: | |||
x_bias (Union[int, float]): X-direction translation, x = x + x_bias*image_length. | |||
Default: 0. | |||
y_bias (Union[int, float]): Y-direction translation, y = y + y_bias*image_wide. | |||
Default: 0. | |||
""" | |||
def __init__(self, x_bias=0, y_bias=0): | |||
super(Translate, self).__init__() | |||
self.set_params(x_bias, y_bias) | |||
def set_params(self, x_bias=0, y_bias=0, auto_param=False): | |||
""" | |||
Set translate parameters. | |||
Args: | |||
x_bias (Union[float, int]): X-direction translation, and x_bias should be in range of (-1, 1). Default: 0. | |||
y_bias (Union[float, int]): Y-direction translation, and y_bias should be in range of (-1, 1). Default: 0. | |||
auto_param (bool): True if auto generate parameters. Default: False. | |||
""" | |||
x_bias = check_param_in_range('x_bias', x_bias, -1, 1) | |||
y_bias = check_param_in_range('y_bias', y_bias, -1, 1) | |||
self.auto_param = auto_param | |||
if auto_param: | |||
self.x_bias = np.random.uniform(-0.3, 0.3) | |||
self.y_bias = np.random.uniform(-0.3, 0.3) | |||
else: | |||
self.x_bias = check_param_multi_types('x_bias', x_bias, | |||
[int, float]) | |||
self.y_bias = check_param_multi_types('y_bias', y_bias, | |||
[int, float]) | |||
def transform(self, image): | |||
""" | |||
Transform the image. | |||
Args: | |||
image(numpy.ndarray): Original image to be transformed. | |||
Returns: | |||
numpy.ndarray, transformed image. | |||
""" | |||
image = check_numpy_param('image', image) | |||
ori_dtype = image.dtype | |||
_, chw, normalized, gray3dim, image = self._check(image) | |||
img = to_pil(image) | |||
image_shape = np.shape(image) | |||
self.x_bias = image_shape[1]*self.x_bias | |||
self.y_bias = image_shape[0]*self.y_bias | |||
trans_image = img.transform(img.size, Image.AFFINE, | |||
(1, 0, self.x_bias, 0, 1, self.y_bias)) | |||
trans_image = self._original_format(trans_image, chw, normalized, | |||
gray3dim) | |||
return trans_image.astype(ori_dtype) | |||
class Scale(ImageTransform): | |||
""" | |||
Scale an image in the middle. | |||
Args: | |||
factor_x (Union[float, int]): Rescale in X-direction, x=factor_x*x. | |||
Default: 1. | |||
factor_y (Union[float, int]): Rescale in Y-direction, y=factor_y*y. | |||
Default: 1. | |||
""" | |||
def __init__(self, factor_x=1, factor_y=1): | |||
super(Scale, self).__init__() | |||
self.set_params(factor_x, factor_y) | |||
def set_params(self, factor_x=1, factor_y=1, auto_param=False): | |||
""" | |||
Set scale parameters. | |||
Args: | |||
factor_x (Union[float, int]): Rescale in X-direction, x=factor_x*x. | |||
Default: 1. | |||
factor_y (Union[float, int]): Rescale in Y-direction, y=factor_y*y. | |||
Default: 1. | |||
auto_param (bool): True if auto generate parameters. Default: False. | |||
""" | |||
if auto_param: | |||
self.factor_x = np.random.uniform(0.7, 3) | |||
self.factor_y = np.random.uniform(0.7, 3) | |||
else: | |||
self.factor_x = check_param_multi_types('factor_x', factor_x, | |||
[int, float]) | |||
self.factor_y = check_param_multi_types('factor_y', factor_y, | |||
[int, float]) | |||
def transform(self, image): | |||
""" | |||
Transform the image. | |||
Args: | |||
image(numpy.ndarray): Original image to be transformed. | |||
Returns: | |||
numpy.ndarray, transformed image. | |||
""" | |||
image = check_numpy_param('image', image) | |||
ori_dtype = image.dtype | |||
rgb, chw, normalized, gray3dim, image = self._check(image) | |||
if rgb: | |||
h, w, _ = np.shape(image) | |||
else: | |||
h, w = np.shape(image) | |||
move_x_centor = w / 2*(1 - self.factor_x) | |||
move_y_centor = h / 2*(1 - self.factor_y) | |||
img = to_pil(image) | |||
trans_image = img.transform(img.size, Image.AFFINE, | |||
(self.factor_x, 0, move_x_centor, | |||
0, self.factor_y, move_y_centor)) | |||
trans_image = self._original_format(trans_image, chw, normalized, | |||
gray3dim) | |||
return trans_image.astype(ori_dtype) | |||
class Shear(ImageTransform): | |||
""" | |||
Shear an image, for each pixel (x, y) in the sheared image, the new value is | |||
taken from a position (x+factor_x*y, factor_y*x+y) in the origin image. Then | |||
the sheared image will be rescaled to fit original size. | |||
Args: | |||
factor_x (Union[float, int]): Shear factor of horizontal direction. | |||
Default: 0. | |||
factor_y (Union[float, int]): Shear factor of vertical direction. | |||
Default: 0. | |||
""" | |||
def __init__(self, factor_x=0, factor_y=0): | |||
super(Shear, self).__init__() | |||
self.set_params(factor_x, factor_y) | |||
def set_params(self, factor_x=0, factor_y=0, auto_param=False): | |||
""" | |||
Set shear parameters. | |||
Args: | |||
factor_x (Union[float, int]): Shear factor of horizontal direction. | |||
Default: 0. | |||
factor_y (Union[float, int]): Shear factor of vertical direction. | |||
Default: 0. | |||
auto_param (bool): True if auto generate parameters. Default: False. | |||
""" | |||
if factor_x != 0 and factor_y != 0: | |||
msg = 'At least one of factor_x and factor_y is zero.' | |||
LOGGER.error(TAG, msg) | |||
raise ValueError(msg) | |||
if auto_param: | |||
if np.random.uniform(-1, 1) > 0: | |||
self.factor_x = np.random.uniform(-2, 2) | |||
self.factor_y = 0 | |||
else: | |||
self.factor_x = 0 | |||
self.factor_y = np.random.uniform(-2, 2) | |||
else: | |||
self.factor_x = check_param_multi_types('factor', factor_x, | |||
[int, float]) | |||
self.factor_y = check_param_multi_types('factor', factor_y, | |||
[int, float]) | |||
def transform(self, image): | |||
""" | |||
Transform the image. | |||
Args: | |||
image(numpy.ndarray): Original image to be transformed. | |||
Returns: | |||
numpy.ndarray, transformed image. | |||
""" | |||
image = check_numpy_param('image', image) | |||
ori_dtype = image.dtype | |||
rgb, chw, normalized, gray3dim, image = self._check(image) | |||
img = to_pil(image) | |||
if rgb: | |||
h, w, _ = np.shape(image) | |||
else: | |||
h, w = np.shape(image) | |||
if self.factor_x != 0: | |||
boarder_x = [0, -w, -self.factor_x*h, -w - self.factor_x*h] | |||
min_x = min(boarder_x) | |||
max_x = max(boarder_x) | |||
scale = (max_x - min_x) / w | |||
move_x_cen = (w - scale*w - scale*h*self.factor_x) / 2 | |||
move_y_cen = h*(1 - scale) / 2 | |||
else: | |||
boarder_y = [0, -h, -self.factor_y*w, -h - self.factor_y*w] | |||
min_y = min(boarder_y) | |||
max_y = max(boarder_y) | |||
scale = (max_y - min_y) / h | |||
move_y_cen = (h - scale*h - scale*w*self.factor_y) / 2 | |||
move_x_cen = w*(1 - scale) / 2 | |||
trans_image = img.transform(img.size, Image.AFFINE, | |||
(scale, scale*self.factor_x, move_x_cen, | |||
scale*self.factor_y, scale, move_y_cen)) | |||
trans_image = self._original_format(trans_image, chw, normalized, | |||
gray3dim) | |||
return trans_image.astype(ori_dtype) | |||
class Rotate(ImageTransform): | |||
""" | |||
Rotate an image of degrees counter clockwise around its center. | |||
Args: | |||
angle(Union[float, int]): Degrees counter clockwise. Default: 0. | |||
""" | |||
def __init__(self, angle=0): | |||
super(Rotate, self).__init__() | |||
self.set_params(angle) | |||
def set_params(self, angle=0, auto_param=False): | |||
""" | |||
Set rotate parameters. | |||
Args: | |||
angle(Union[float, int]): Degrees counter clockwise. Default: 0. | |||
auto_param (bool): True if auto generate parameters. Default: False. | |||
""" | |||
if auto_param: | |||
self.angle = np.random.uniform(0, 360) | |||
else: | |||
self.angle = check_param_multi_types('angle', angle, [int, float]) | |||
def transform(self, image): | |||
""" | |||
Transform the image. | |||
Args: | |||
image(numpy.ndarray): Original image to be transformed. | |||
Returns: | |||
numpy.ndarray, transformed image. | |||
""" | |||
image = check_numpy_param('image', image) | |||
ori_dtype = image.dtype | |||
_, chw, normalized, gray3dim, image = self._check(image) | |||
img = to_pil(image) | |||
trans_image = img.rotate(self.angle, expand=False) | |||
trans_image = self._original_format(trans_image, chw, normalized, | |||
gray3dim) | |||
return trans_image.astype(ori_dtype) |
@@ -99,15 +99,17 @@ def test_fuzzing_ascend(): | |||
model = Model(net) | |||
batch_size = 8 | |||
num_classe = 10 | |||
mutate_config = [{'method': 'Blur', | |||
'params': {'auto_param': [True]}}, | |||
mutate_config = [{'method': 'GaussianBlur', | |||
'params': {'ksize': [1, 2, 3, 5], | |||
'auto_param': [True, False]}}, | |||
{'method': 'UniformNoise', | |||
'params': {'factor': [0.1, 0.2, 0.3], 'auto_param': [False, True]}}, | |||
{'method': 'Contrast', | |||
'params': {'factor': [2, 1]}}, | |||
{'method': 'Translate', | |||
'params': {'x_bias': [0.1, 0.3], 'y_bias': [0.2]}}, | |||
'params': {'alpha': [0.5, 1, 1.5], 'beta': [-10, 0, 10], 'auto_param': [False, True]}}, | |||
{'method': 'Rotate', | |||
'params': {'angle': [20, 90], 'auto_param': [False, True]}}, | |||
{'method': 'FGSM', | |||
'params': {'eps': [0.1, 0.2, 0.3], 'alpha': [0.1]}} | |||
] | |||
'params': {'eps': [0.3, 0.2, 0.4], 'alpha': [0.1], 'bounds': [(0, 1)]}}] | |||
train_images = np.random.rand(32, 1, 32, 32).astype(np.float32) | |||
# fuzz test with original test data | |||
@@ -142,15 +144,17 @@ def test_fuzzing_cpu(): | |||
model = Model(net) | |||
batch_size = 8 | |||
num_classe = 10 | |||
mutate_config = [{'method': 'Blur', | |||
'params': {'auto_param': [True]}}, | |||
mutate_config = [{'method': 'GaussianBlur', | |||
'params': {'ksize': [1, 2, 3, 5], | |||
'auto_param': [True, False]}}, | |||
{'method': 'UniformNoise', | |||
'params': {'factor': [0.1, 0.2, 0.3], 'auto_param': [False, True]}}, | |||
{'method': 'Contrast', | |||
'params': {'factor': [2, 1]}}, | |||
{'method': 'Translate', | |||
'params': {'x_bias': [0.1, 0.3], 'y_bias': [0.2]}}, | |||
'params': {'alpha': [0.5, 1, 1.5], 'beta': [-10, 0, 10], 'auto_param': [False, True]}}, | |||
{'method': 'Rotate', | |||
'params': {'angle': [20, 90], 'auto_param': [False, True]}}, | |||
{'method': 'FGSM', | |||
'params': {'eps': [0.1, 0.2, 0.3], 'alpha': [0.1]}} | |||
] | |||
'params': {'eps': [0.3, 0.2, 0.4], 'alpha': [0.1], 'bounds': [(0, 1)]}}] | |||
# initialize fuzz test with training dataset | |||
train_images = np.random.rand(32, 1, 32, 32).astype(np.float32) | |||
@@ -1,126 +0,0 @@ | |||
# Copyright 2019 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
""" | |||
Image transform test. | |||
""" | |||
import numpy as np | |||
import pytest | |||
from mindarmour.utils.logger import LogUtil | |||
from mindarmour.fuzz_testing.image_transform import Contrast, Brightness, \ | |||
Blur, Noise, Translate, Scale, Shear, Rotate | |||
LOGGER = LogUtil.get_instance() | |||
TAG = 'Image transform test' | |||
LOGGER.set_level('INFO') | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_x86_cpu | |||
@pytest.mark.env_onecard | |||
@pytest.mark.component_mindarmour | |||
def test_contrast(): | |||
image = (np.random.rand(32, 32)).astype(np.float32) | |||
trans = Contrast() | |||
trans.set_params(auto_param=True) | |||
_ = trans.transform(image) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_x86_cpu | |||
@pytest.mark.env_onecard | |||
@pytest.mark.component_mindarmour | |||
def test_brightness(): | |||
image = (np.random.rand(32, 32)).astype(np.float32) | |||
trans = Brightness() | |||
trans.set_params(auto_param=True) | |||
_ = trans.transform(image) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_x86_cpu | |||
@pytest.mark.platform_x86_ascend_training | |||
@pytest.mark.platform_arm_ascend_training | |||
@pytest.mark.env_onecard | |||
@pytest.mark.component_mindarmour | |||
def test_blur(): | |||
image = (np.random.rand(32, 32)).astype(np.float32) | |||
trans = Blur() | |||
trans.set_params(auto_param=True) | |||
_ = trans.transform(image) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_x86_cpu | |||
@pytest.mark.platform_x86_ascend_training | |||
@pytest.mark.platform_arm_ascend_training | |||
@pytest.mark.env_onecard | |||
@pytest.mark.component_mindarmour | |||
def test_noise(): | |||
image = (np.random.rand(32, 32)).astype(np.float32) | |||
trans = Noise() | |||
trans.set_params(auto_param=True) | |||
_ = trans.transform(image) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_x86_cpu | |||
@pytest.mark.platform_x86_ascend_training | |||
@pytest.mark.platform_arm_ascend_training | |||
@pytest.mark.env_onecard | |||
@pytest.mark.component_mindarmour | |||
def test_translate(): | |||
image = (np.random.rand(32, 32)).astype(np.float32) | |||
trans = Translate() | |||
trans.set_params(auto_param=True) | |||
_ = trans.transform(image) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_x86_cpu | |||
@pytest.mark.platform_x86_ascend_training | |||
@pytest.mark.platform_arm_ascend_training | |||
@pytest.mark.env_onecard | |||
@pytest.mark.component_mindarmour | |||
def test_shear(): | |||
image = (np.random.rand(32, 32)).astype(np.float32) | |||
trans = Shear() | |||
trans.set_params(auto_param=True) | |||
_ = trans.transform(image) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_x86_cpu | |||
@pytest.mark.platform_x86_ascend_training | |||
@pytest.mark.platform_arm_ascend_training | |||
@pytest.mark.env_onecard | |||
@pytest.mark.component_mindarmour | |||
def test_scale(): | |||
image = (np.random.rand(32, 32)).astype(np.float32) | |||
trans = Scale() | |||
trans.set_params(auto_param=True) | |||
_ = trans.transform(image) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_x86_cpu | |||
@pytest.mark.platform_x86_ascend_training | |||
@pytest.mark.platform_arm_ascend_training | |||
@pytest.mark.env_onecard | |||
@pytest.mark.component_mindarmour | |||
def test_rotate(): | |||
image = (np.random.rand(32, 32)).astype(np.float32) | |||
trans = Rotate() | |||
trans.set_params(auto_param=True) | |||
_ = trans.transform(image) |