Author | SHA1 | Message | Date |
---|---|---|---|
|
b3b96870b8 |
!310 Update PAD and PGD
Merge pull request !310 from jxlang910/r1.2 |
3 years ago |
|
720cebc66c | Update PAD and PGD | 3 years ago |
|
ab073686c8 |
!309 update release notes
Merge pull request !309 from jxlang910/r1.2 |
3 years ago |
|
285ae300e4 | update release notes | 3 years ago |
|
b7b12495bd |
!308 patch for version 1.2
Merge pull request !308 from jxlang910/r1.2 |
3 years ago |
|
dbea7e6a54 | patch for version 1.2 | 3 years ago |
|
40880b54d0 |
!204 Update verion number from 1.2.0-rc1 to 1.2.0
From: @pkuliuliu Reviewed-by: @zhidanliu,@jxlang910 Signed-off-by: @jxlang910 |
4 years ago |
|
2cd249445b | update version number | 4 years ago |
|
0c59a3f28c |
!201 Fix a bug of python-api
From: @jxlang910 Reviewed-by: @pkuliuliu,@liu_luobin Signed-off-by: @pkuliuliu |
4 years ago |
|
32c541d39e | Fix a bug of python-api | 4 years ago |
|
9cc67c9ce1 |
!199 Fix several indent bugs of mindarmour python-api
From: @jxlang910 Reviewed-by: @pkuliuliu,@liu_luobin Signed-off-by: @pkuliuliu |
4 years ago |
|
4b41a52a3a | Fix several issues of python-api | 4 years ago |
|
41ee10ef28 |
!197 Fix several issues of python-api
From: @jxlang910 Reviewed-by: @liu_luobin,@zhidanliu,@pkuliuliu Signed-off-by: @pkuliuliu,@pkuliuliu |
4 years ago |
|
d4a447f518 | Fix several issues of python-api | 4 years ago |
|
bba9f37b7f |
!195 Update Release Notes
From: @pkuliuliu Reviewed-by: @jxlang910,@jxlang910,@zhidanliu Signed-off-by: @jxlang910,@jxlang910,@zhidanliu |
4 years ago |
|
76e1dc9c34 | update release notes | 4 years ago |
|
45bdd8a505 |
!194 Fix an issue of api
From: @jxlang910 Reviewed-by: @liu_luobin,@pkuliuliu Signed-off-by: @pkuliuliu |
4 years ago |
|
5b24d1b7b2 | Fix an api issue | 4 years ago |
|
8a1c8af983 |
!191 Update version number to rc1
From: @pkuliuliu Reviewed-by: @jxlang910,@liu_luobin Signed-off-by: @jxlang910 |
4 years ago |
|
b32ab79025 | update version number to rc1 | 4 years ago |
|
8ecc67c80d |
!188 Remove the use of 'ControlDepend' in Diff privacy codes.
From: @jxlang910 Reviewed-by: @liu_luobin,@pkuliuliu Signed-off-by: @pkuliuliu |
4 years ago |
|
e64211ba9b | Remove the use of 'ControlDepend' in Diff privacy | 4 years ago |
|
46c45e0114 |
!186 Update Release Notes to 1.2.0
From: @pkuliuliu Reviewed-by: @jxlang910,@liu_luobin Signed-off-by: @jxlang910 |
4 years ago |
|
3e47a73439 |
!186 Update Release Notes to 1.2.0
From: @pkuliuliu Reviewed-by: @jxlang910,@liu_luobin Signed-off-by: @jxlang910 |
4 years ago |
|
dc85ad8571 | Update Release Notes to 1.2.0 | 4 years ago |
@@ -1,3 +1,61 @@ | |||||
# MindArmour 1.2.1 | |||||
## MindArmour 1.2.1 Release Notes | |||||
### Bug fixes | |||||
* [BUGFIX] Fix a bug of PGD method | |||||
* [BUGFIX] Fix a bug of JSMA method | |||||
### Contributors | |||||
Thanks goes to these wonderful people: | |||||
Liu Liu, Zhidan Liu, Luobin Liu and Xiulang Jin. | |||||
Contributions of any kind are welcome! | |||||
# MindArmour 1.2.0 | |||||
## MindArmour 1.2.0 Release Notes | |||||
### Major Features and Improvements | |||||
#### Privacy | |||||
* [STABLE]Tailored-based privacy protection technology (Pynative) | |||||
* [STABLE]Model Inversion. Reverse analysis technology of privacy information | |||||
### API Change | |||||
#### Backwards Incompatible Change | |||||
##### C++ API | |||||
[Modify] ... | |||||
[Add] ... | |||||
[Delete] ... | |||||
##### Java API | |||||
[Add] ... | |||||
#### Deprecations | |||||
##### C++ API | |||||
##### Java API | |||||
### Bug fixes | |||||
[BUGFIX] ... | |||||
### Contributors | |||||
Thanks goes to these wonderful people: | |||||
han.yin | |||||
# MindArmour 1.1.0 Release Notes | # MindArmour 1.1.0 Release Notes | ||||
## MindArmour | ## MindArmour | ||||
@@ -75,7 +75,6 @@ class GradientMethod(Attack): | |||||
else: | else: | ||||
with_loss_cell = WithLossCell(self._network, loss_fn) | with_loss_cell = WithLossCell(self._network, loss_fn) | ||||
self._grad_all = GradWrapWithLoss(with_loss_cell) | self._grad_all = GradWrapWithLoss(with_loss_cell) | ||||
self._grad_all.set_train() | |||||
def generate(self, inputs, labels): | def generate(self, inputs, labels): | ||||
""" | """ | ||||
@@ -14,6 +14,7 @@ | |||||
""" Iterative gradient method attack. """ | """ Iterative gradient method attack. """ | ||||
from abc import abstractmethod | from abc import abstractmethod | ||||
import copy | |||||
import numpy as np | import numpy as np | ||||
from PIL import Image, ImageOps | from PIL import Image, ImageOps | ||||
@@ -68,13 +69,14 @@ def _reshape_l1_projection(values, eps=3): | |||||
return proj_x | return proj_x | ||||
def _projection(values, eps, norm_level): | |||||
def _projection(values, eps, clip_diff, norm_level): | |||||
""" | """ | ||||
Implementation of values normalization within eps. | Implementation of values normalization within eps. | ||||
Args: | Args: | ||||
values (numpy.ndarray): Input data. | values (numpy.ndarray): Input data. | ||||
eps (float): Project radius. | eps (float): Project radius. | ||||
clip_diff (float): Difference range of clip bounds. | |||||
norm_level (Union[int, char, numpy.inf]): Order of the norm. Possible | norm_level (Union[int, char, numpy.inf]): Order of the norm. Possible | ||||
values: np.inf, 1 or 2. | values: np.inf, 1 or 2. | ||||
@@ -88,12 +90,12 @@ def _projection(values, eps, norm_level): | |||||
if norm_level in (1, '1'): | if norm_level in (1, '1'): | ||||
sample_batch = values.shape[0] | sample_batch = values.shape[0] | ||||
x_flat = values.reshape(sample_batch, -1) | x_flat = values.reshape(sample_batch, -1) | ||||
proj_flat = _reshape_l1_projection(x_flat, eps) | |||||
proj_flat = _reshape_l1_projection(x_flat, eps*clip_diff) | |||||
return proj_flat.reshape(values.shape) | return proj_flat.reshape(values.shape) | ||||
if norm_level in (2, '2'): | if norm_level in (2, '2'): | ||||
return eps*normalize_value(values, norm_level) | return eps*normalize_value(values, norm_level) | ||||
if norm_level in (np.inf, 'inf'): | if norm_level in (np.inf, 'inf'): | ||||
return eps*np.sign(values) | |||||
return eps*clip_diff*np.sign(values) | |||||
msg = 'Values of `norm_level` different from 1, 2 and `np.inf` are ' \ | msg = 'Values of `norm_level` different from 1, 2 and `np.inf` are ' \ | ||||
'currently not supported.' | 'currently not supported.' | ||||
LOGGER.error(TAG, msg) | LOGGER.error(TAG, msg) | ||||
@@ -132,7 +134,6 @@ class IterativeGradientMethod(Attack): | |||||
self._loss_grad = network | self._loss_grad = network | ||||
else: | else: | ||||
self._loss_grad = GradWrapWithLoss(WithLossCell(self._network, loss_fn)) | self._loss_grad = GradWrapWithLoss(WithLossCell(self._network, loss_fn)) | ||||
self._loss_grad.set_train() | |||||
@abstractmethod | @abstractmethod | ||||
def generate(self, inputs, labels): | def generate(self, inputs, labels): | ||||
@@ -442,33 +443,27 @@ class ProjectedGradientDescent(BasicIterativeMethod): | |||||
""" | """ | ||||
inputs_image, inputs, labels = check_inputs_labels(inputs, labels) | inputs_image, inputs, labels = check_inputs_labels(inputs, labels) | ||||
arr_x = inputs_image | arr_x = inputs_image | ||||
adv_x = copy.deepcopy(inputs_image) | |||||
if self._bounds is not None: | if self._bounds is not None: | ||||
clip_min, clip_max = self._bounds | clip_min, clip_max = self._bounds | ||||
clip_diff = clip_max - clip_min | clip_diff = clip_max - clip_min | ||||
for _ in range(self._nb_iter): | |||||
adv_x = self._attack.generate(inputs, labels) | |||||
perturs = _projection(adv_x - arr_x, | |||||
self._eps, | |||||
norm_level=self._norm_level) | |||||
perturs = np.clip(perturs, (0 - self._eps)*clip_diff, | |||||
self._eps*clip_diff) | |||||
adv_x = arr_x + perturs | |||||
if isinstance(inputs, tuple): | |||||
inputs = (adv_x,) + inputs[1:] | |||||
else: | |||||
inputs = adv_x | |||||
else: | else: | ||||
for _ in range(self._nb_iter): | |||||
adv_x = self._attack.generate(inputs, labels) | |||||
perturs = _projection(adv_x - arr_x, | |||||
self._eps, | |||||
norm_level=self._norm_level) | |||||
adv_x = arr_x + perturs | |||||
adv_x = np.clip(adv_x, arr_x - self._eps, arr_x + self._eps) | |||||
if isinstance(inputs, tuple): | |||||
inputs = (adv_x,) + inputs[1:] | |||||
else: | |||||
inputs = adv_x | |||||
clip_diff = 1 | |||||
for _ in range(self._nb_iter): | |||||
inputs_tensor = to_tensor_tuple(inputs) | |||||
labels_tensor = to_tensor_tuple(labels) | |||||
out_grad = self._loss_grad(*inputs_tensor, *labels_tensor) | |||||
gradient = out_grad.asnumpy() | |||||
perturbs = _projection(gradient, self._eps_iter, clip_diff, norm_level=self._norm_level) | |||||
sum_perturbs = adv_x - arr_x + perturbs | |||||
sum_perturbs = np.clip(sum_perturbs, (0 - self._eps)*clip_diff, self._eps*clip_diff) | |||||
adv_x = arr_x + sum_perturbs | |||||
if self._bounds is not None: | |||||
adv_x = np.clip(adv_x, clip_min, clip_max) | |||||
if isinstance(inputs, tuple): | |||||
inputs = (adv_x,) + inputs[1:] | |||||
else: | |||||
inputs = adv_x | |||||
return adv_x | return adv_x | ||||
@@ -134,7 +134,6 @@ class JSMAAttack(Attack): | |||||
ori_shape = data.shape | ori_shape = data.shape | ||||
temp = data.flatten() | temp = data.flatten() | ||||
bit_map = np.ones_like(temp) | bit_map = np.ones_like(temp) | ||||
fake_res = np.zeros_like(data) | |||||
counter = np.zeros_like(temp) | counter = np.zeros_like(temp) | ||||
perturbed = np.copy(temp) | perturbed = np.copy(temp) | ||||
for _ in range(self._max_iter): | for _ in range(self._max_iter): | ||||
@@ -167,7 +166,7 @@ class JSMAAttack(Attack): | |||||
bit_map[p2_ind] = 0 | bit_map[p2_ind] = 0 | ||||
perturbed = np.clip(perturbed, self._min, self._max) | perturbed = np.clip(perturbed, self._min, self._max) | ||||
LOGGER.debug(TAG, 'fail to find adversarial sample.') | LOGGER.debug(TAG, 'fail to find adversarial sample.') | ||||
return fake_res | |||||
return perturbed.reshape(ori_shape) | |||||
def generate(self, inputs, labels): | def generate(self, inputs, labels): | ||||
""" | """ | ||||
@@ -136,6 +136,7 @@ class AdversarialDefenseWithAttacks(AdversarialDefense): | |||||
replace_ratio, | replace_ratio, | ||||
0, 1) | 0, 1) | ||||
self._graph_initialized = False | self._graph_initialized = False | ||||
self._train_net.set_train() | |||||
def defense(self, inputs, labels): | def defense(self, inputs, labels): | ||||
""" | """ | ||||
@@ -136,10 +136,10 @@ class AttackEvaluate: | |||||
- float, return average l0, l2, or linf distance of all success | - float, return average l0, l2, or linf distance of all success | ||||
adversarial examples, return value includes following cases. | adversarial examples, return value includes following cases. | ||||
- If return value :math:`>=` 0, average lp distance. The lower, | |||||
the more successful the attack is. | |||||
- If return value :math:`>=` 0, average lp distance. The lower, | |||||
the more successful the attack is. | |||||
- If return value is -1, there is no success adversarial examples. | |||||
- If return value is -1, there is no success adversarial examples. | |||||
""" | """ | ||||
idxes = self._success_idxes | idxes = self._success_idxes | ||||
success_num = idxes.shape[0] | success_num = idxes.shape[0] | ||||
@@ -164,10 +164,10 @@ class AttackEvaluate: | |||||
Returns: | Returns: | ||||
- float, average structural similarity. | - float, average structural similarity. | ||||
- If return value ranges between (0, 1), the higher, the more | |||||
successful the attack is. | |||||
- If return value ranges between (0, 1), the higher, the more | |||||
successful the attack is. | |||||
- If return value is -1: there is no success adversarial examples. | |||||
- If return value is -1: there is no success adversarial examples. | |||||
""" | """ | ||||
success_num = self._success_idxes.shape[0] | success_num = self._success_idxes.shape[0] | ||||
if success_num == 0: | if success_num == 0: | ||||
@@ -106,7 +106,7 @@ class DefenseEvaluate: | |||||
Returns: | Returns: | ||||
- float, the lower, the more successful the defense is. | - float, the lower, the more successful the defense is. | ||||
- If return value == -1, len(idxes) == 0. | |||||
- If return value == -1, len(idxes) == 0. | |||||
""" | """ | ||||
idxes = np.arange(self._num_samples) | idxes = np.arange(self._num_samples) | ||||
cond1 = np.argmax(self._def_preds, axis=1) == self._true_labels | cond1 = np.argmax(self._def_preds, axis=1) == self._true_labels | ||||
@@ -183,8 +183,8 @@ class NoiseGaussianRandom(_Mechanisms): | |||||
initial_noise_multiplier(float): Ratio of the standard deviation of | initial_noise_multiplier(float): Ratio of the standard deviation of | ||||
Gaussian noise divided by the norm_bound, which will be used to | Gaussian noise divided by the norm_bound, which will be used to | ||||
calculate privacy spent. Default: 1.0. | calculate privacy spent. Default: 1.0. | ||||
seed(int): Original random seed, if seed=0 random normal will use secure | |||||
random number. IF seed!=0 random normal will generate values using | |||||
seed(int): Original random seed, if seed=0, random normal will use secure | |||||
random number. If seed!=0, random normal will generate values using | |||||
given seed. Default: 0. | given seed. Default: 0. | ||||
decay_policy(str): Mechanisms parameters update policy. Default: None. | decay_policy(str): Mechanisms parameters update policy. Default: None. | ||||
@@ -38,7 +38,6 @@ from mindspore.ops.operations import NPUAllocFloatStatus | |||||
from mindspore.ops.operations import NPUClearFloatStatus | from mindspore.ops.operations import NPUClearFloatStatus | ||||
from mindspore.ops.operations import ReduceSum | from mindspore.ops.operations import ReduceSum | ||||
from mindspore.ops.operations import LessEqual | from mindspore.ops.operations import LessEqual | ||||
from mindspore.ops.operations import ControlDepend | |||||
from mindspore.parallel._utils import _get_gradients_mean | from mindspore.parallel._utils import _get_gradients_mean | ||||
from mindspore.parallel._utils import _get_device_num | from mindspore.parallel._utils import _get_device_num | ||||
from mindspore.nn.wrap.grad_reducer import DistributedGradReducer | from mindspore.nn.wrap.grad_reducer import DistributedGradReducer | ||||
@@ -395,7 +394,6 @@ class _TrainOneStepWithLossScaleCell(Cell): | |||||
self.reduce_sum = ReduceSum(keep_dims=False) | self.reduce_sum = ReduceSum(keep_dims=False) | ||||
self.base = Tensor(1, mstype.float32) | self.base = Tensor(1, mstype.float32) | ||||
self.less_equal = LessEqual() | self.less_equal = LessEqual() | ||||
self.depend_parameter_use = ControlDepend(depend_mode=1) | |||||
self.allreduce = P.AllReduce() | self.allreduce = P.AllReduce() | ||||
self.parallel_mode = _get_parallel_mode() | self.parallel_mode = _get_parallel_mode() | ||||
self.grad_reducer = F.identity | self.grad_reducer = F.identity | ||||
@@ -95,7 +95,7 @@ def _softmax_cross_entropy(logits, labels): | |||||
class MembershipInference: | class MembershipInference: | ||||
""" | """ | ||||
Evaluation proposed by Shokri, Stronati, Song and Shmatikov is a grey-box attack. | Evaluation proposed by Shokri, Stronati, Song and Shmatikov is a grey-box attack. | ||||
The attack requires obtain loss or logits results of training samples. | |||||
The attack requires loss or logits results of training samples. | |||||
References: `Reza Shokri, Marco Stronati, Congzheng Song, Vitaly Shmatikov. | References: `Reza Shokri, Marco Stronati, Congzheng Song, Vitaly Shmatikov. | ||||
Membership Inference Attacks against Machine Learning Models. 2017. | Membership Inference Attacks against Machine Learning Models. 2017. | ||||
@@ -20,7 +20,7 @@ from setuptools import setup | |||||
from setuptools.command.egg_info import egg_info | from setuptools.command.egg_info import egg_info | ||||
from setuptools.command.build_py import build_py | from setuptools.command.build_py import build_py | ||||
version = '1.2.0' | |||||
version = '1.2.1' | |||||
cur_dir = os.path.dirname(os.path.realpath(__file__)) | cur_dir = os.path.dirname(os.path.realpath(__file__)) | ||||
pkg_dir = os.path.join(cur_dir, 'build') | pkg_dir = os.path.join(cur_dir, 'build') | ||||
@@ -26,7 +26,6 @@ from mindarmour.utils.logger import LogUtil | |||||
from tests.ut.python.utils.mock_net import Net | from tests.ut.python.utils.mock_net import Net | ||||
context.set_context(mode=context.GRAPH_MODE) | context.set_context(mode=context.GRAPH_MODE) | ||||
context.set_context(device_target="Ascend") | |||||
LOGGER = LogUtil.get_instance() | LOGGER = LogUtil.get_instance() | ||||
TAG = 'HopSkipJumpAttack' | TAG = 'HopSkipJumpAttack' | ||||
@@ -91,9 +90,9 @@ def test_hsja_mnist_attack(): | |||||
""" | """ | ||||
hsja-Attack test | hsja-Attack test | ||||
""" | """ | ||||
context.set_context(device_target="Ascend") | |||||
current_dir = os.path.dirname(os.path.abspath(__file__)) | current_dir = os.path.dirname(os.path.abspath(__file__)) | ||||
# get test data | # get test data | ||||
test_images_set = np.load(os.path.join(current_dir, | test_images_set = np.load(os.path.join(current_dir, | ||||
'../../../dataset/test_images.npy')) | '../../../dataset/test_images.npy')) | ||||
@@ -159,6 +158,7 @@ def test_hsja_mnist_attack(): | |||||
@pytest.mark.env_card | @pytest.mark.env_card | ||||
@pytest.mark.component_mindarmour | @pytest.mark.component_mindarmour | ||||
def test_value_error(): | def test_value_error(): | ||||
context.set_context(device_target="Ascend") | |||||
model = get_model() | model = get_model() | ||||
norm = 'l2' | norm = 'l2' | ||||
with pytest.raises(ValueError): | with pytest.raises(ValueError): | ||||
@@ -26,7 +26,6 @@ from mindarmour.utils.logger import LogUtil | |||||
from tests.ut.python.utils.mock_net import Net | from tests.ut.python.utils.mock_net import Net | ||||
context.set_context(mode=context.GRAPH_MODE) | context.set_context(mode=context.GRAPH_MODE) | ||||
context.set_context(device_target="Ascend") | |||||
LOGGER = LogUtil.get_instance() | LOGGER = LogUtil.get_instance() | ||||
TAG = 'HopSkipJumpAttack' | TAG = 'HopSkipJumpAttack' | ||||
@@ -103,6 +102,7 @@ def nes_mnist_attack(scene, top_k): | |||||
""" | """ | ||||
hsja-Attack test | hsja-Attack test | ||||
""" | """ | ||||
context.set_context(device_target="Ascend") | |||||
current_dir = os.path.dirname(os.path.abspath(__file__)) | current_dir = os.path.dirname(os.path.abspath(__file__)) | ||||
test_images, test_labels = get_dataset(current_dir) | test_images, test_labels = get_dataset(current_dir) | ||||
model = get_model(current_dir) | model = get_model(current_dir) | ||||
@@ -167,6 +167,7 @@ def nes_mnist_attack(scene, top_k): | |||||
@pytest.mark.component_mindarmour | @pytest.mark.component_mindarmour | ||||
def test_nes_query_limit(): | def test_nes_query_limit(): | ||||
# scene is in ['Query_Limit', 'Partial_Info', 'Label_Only'] | # scene is in ['Query_Limit', 'Partial_Info', 'Label_Only'] | ||||
context.set_context(device_target="Ascend") | |||||
scene = 'Query_Limit' | scene = 'Query_Limit' | ||||
nes_mnist_attack(scene, top_k=-1) | nes_mnist_attack(scene, top_k=-1) | ||||
@@ -178,6 +179,7 @@ def test_nes_query_limit(): | |||||
@pytest.mark.component_mindarmour | @pytest.mark.component_mindarmour | ||||
def test_nes_partial_info(): | def test_nes_partial_info(): | ||||
# scene is in ['Query_Limit', 'Partial_Info', 'Label_Only'] | # scene is in ['Query_Limit', 'Partial_Info', 'Label_Only'] | ||||
context.set_context(device_target="Ascend") | |||||
scene = 'Partial_Info' | scene = 'Partial_Info' | ||||
nes_mnist_attack(scene, top_k=5) | nes_mnist_attack(scene, top_k=5) | ||||
@@ -189,6 +191,7 @@ def test_nes_partial_info(): | |||||
@pytest.mark.component_mindarmour | @pytest.mark.component_mindarmour | ||||
def test_nes_label_only(): | def test_nes_label_only(): | ||||
# scene is in ['Query_Limit', 'Partial_Info', 'Label_Only'] | # scene is in ['Query_Limit', 'Partial_Info', 'Label_Only'] | ||||
context.set_context(device_target="Ascend") | |||||
scene = 'Label_Only' | scene = 'Label_Only' | ||||
nes_mnist_attack(scene, top_k=5) | nes_mnist_attack(scene, top_k=5) | ||||
@@ -200,6 +203,7 @@ def test_nes_label_only(): | |||||
@pytest.mark.component_mindarmour | @pytest.mark.component_mindarmour | ||||
def test_value_error(): | def test_value_error(): | ||||
"""test that exception is raised for invalid labels""" | """test that exception is raised for invalid labels""" | ||||
context.set_context(device_target="Ascend") | |||||
with pytest.raises(ValueError): | with pytest.raises(ValueError): | ||||
assert nes_mnist_attack('Label_Only', -1) | assert nes_mnist_attack('Label_Only', -1) | ||||
@@ -210,6 +214,7 @@ def test_value_error(): | |||||
@pytest.mark.env_card | @pytest.mark.env_card | ||||
@pytest.mark.component_mindarmour | @pytest.mark.component_mindarmour | ||||
def test_none(): | def test_none(): | ||||
context.set_context(device_target="Ascend") | |||||
current_dir = os.path.dirname(os.path.abspath(__file__)) | current_dir = os.path.dirname(os.path.abspath(__file__)) | ||||
model = get_model(current_dir) | model = get_model(current_dir) | ||||
test_images, test_labels = get_dataset(current_dir) | test_images, test_labels = get_dataset(current_dir) | ||||
@@ -28,8 +28,6 @@ from mindarmour.utils.logger import LogUtil | |||||
from tests.ut.python.utils.mock_net import Net | from tests.ut.python.utils.mock_net import Net | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
LOGGER = LogUtil.get_instance() | LOGGER = LogUtil.get_instance() | ||||
TAG = 'Pointwise_Test' | TAG = 'Pointwise_Test' | ||||
LOGGER.set_level('INFO') | LOGGER.set_level('INFO') | ||||
@@ -57,6 +55,7 @@ def test_pointwise_attack_method(): | |||||
""" | """ | ||||
Pointwise attack method unit test. | Pointwise attack method unit test. | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
np.random.seed(123) | np.random.seed(123) | ||||
# upload trained network | # upload trained network | ||||
current_dir = os.path.dirname(os.path.abspath(__file__)) | current_dir = os.path.dirname(os.path.abspath(__file__)) | ||||
@@ -26,8 +26,6 @@ from mindarmour import BlackModel | |||||
from mindarmour.adv_robustness.attacks import SaltAndPepperNoiseAttack | from mindarmour.adv_robustness.attacks import SaltAndPepperNoiseAttack | ||||
context.set_context(mode=context.GRAPH_MODE) | context.set_context(mode=context.GRAPH_MODE) | ||||
context.set_context(device_target="Ascend") | |||||
# for user | # for user | ||||
class ModelToBeAttacked(BlackModel): | class ModelToBeAttacked(BlackModel): | ||||
@@ -79,6 +77,7 @@ def test_salt_and_pepper_attack_method(): | |||||
""" | """ | ||||
Salt and pepper attack method unit test. | Salt and pepper attack method unit test. | ||||
""" | """ | ||||
context.set_context(device_target="Ascend") | |||||
batch_size = 6 | batch_size = 6 | ||||
np.random.seed(123) | np.random.seed(123) | ||||
net = SimpleNet() | net = SimpleNet() | ||||
@@ -105,6 +104,7 @@ def test_salt_and_pepper_attack_in_batch(): | |||||
""" | """ | ||||
Salt and pepper attack method unit test in batch. | Salt and pepper attack method unit test in batch. | ||||
""" | """ | ||||
context.set_context(device_target="Ascend") | |||||
batch_size = 32 | batch_size = 32 | ||||
np.random.seed(123) | np.random.seed(123) | ||||
net = SimpleNet() | net = SimpleNet() | ||||
@@ -24,10 +24,6 @@ from mindspore.nn import Cell, SoftmaxCrossEntropyWithLogits | |||||
from mindarmour.adv_robustness.attacks import FastGradientMethod | from mindarmour.adv_robustness.attacks import FastGradientMethod | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
# for user | # for user | ||||
class Net(Cell): | class Net(Cell): | ||||
""" | """ | ||||
@@ -118,6 +114,7 @@ def test_batch_generate_attack(): | |||||
""" | """ | ||||
Attack with batch-generate. | Attack with batch-generate. | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
input_np = np.random.random((128, 10)).astype(np.float32) | input_np = np.random.random((128, 10)).astype(np.float32) | ||||
label = np.random.randint(0, 10, 128).astype(np.int32) | label = np.random.randint(0, 10, 128).astype(np.int32) | ||||
label = np.eye(10)[label].astype(np.float32) | label = np.eye(10)[label].astype(np.float32) | ||||
@@ -23,10 +23,6 @@ from mindspore import context | |||||
from mindarmour.adv_robustness.attacks import CarliniWagnerL2Attack | from mindarmour.adv_robustness.attacks import CarliniWagnerL2Attack | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
# for user | # for user | ||||
class Net(Cell): | class Net(Cell): | ||||
""" | """ | ||||
@@ -63,6 +59,7 @@ def test_cw_attack(): | |||||
""" | """ | ||||
CW-Attack test | CW-Attack test | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
net = Net() | net = Net() | ||||
input_np = np.array([[0.1, 0.2, 0.7, 0.5, 0.4]]).astype(np.float32) | input_np = np.array([[0.1, 0.2, 0.7, 0.5, 0.4]]).astype(np.float32) | ||||
label_np = np.array([3]).astype(np.int64) | label_np = np.array([3]).astype(np.int64) | ||||
@@ -81,6 +78,7 @@ def test_cw_attack_targeted(): | |||||
""" | """ | ||||
CW-Attack test | CW-Attack test | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
net = Net() | net = Net() | ||||
input_np = np.array([[0.1, 0.2, 0.7, 0.5, 0.4]]).astype(np.float32) | input_np = np.array([[0.1, 0.2, 0.7, 0.5, 0.4]]).astype(np.float32) | ||||
target_np = np.array([1]).astype(np.int64) | target_np = np.array([1]).astype(np.int64) | ||||
@@ -24,7 +24,6 @@ from mindspore import Tensor | |||||
from mindarmour.adv_robustness.attacks import DeepFool | from mindarmour.adv_robustness.attacks import DeepFool | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
# for user | # for user | ||||
@@ -80,6 +79,7 @@ def test_deepfool_attack(): | |||||
""" | """ | ||||
Deepfool-Attack test | Deepfool-Attack test | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
net = Net() | net = Net() | ||||
input_shape = (1, 5) | input_shape = (1, 5) | ||||
_, classes = input_shape | _, classes = input_shape | ||||
@@ -105,6 +105,7 @@ def test_deepfool_attack_detection(): | |||||
""" | """ | ||||
Deepfool-Attack test | Deepfool-Attack test | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
net = Net2() | net = Net2() | ||||
inputs1_np = np.random.random((2, 10, 10)).astype(np.float32) | inputs1_np = np.random.random((2, 10, 10)).astype(np.float32) | ||||
inputs2_np = np.random.random((2, 10, 5)).astype(np.float32) | inputs2_np = np.random.random((2, 10, 5)).astype(np.float32) | ||||
@@ -128,6 +129,7 @@ def test_deepfool_attack_inf(): | |||||
""" | """ | ||||
Deepfool-Attack test | Deepfool-Attack test | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
net = Net() | net = Net() | ||||
input_shape = (1, 5) | input_shape = (1, 5) | ||||
_, classes = input_shape | _, classes = input_shape | ||||
@@ -146,6 +148,7 @@ def test_deepfool_attack_inf(): | |||||
@pytest.mark.env_card | @pytest.mark.env_card | ||||
@pytest.mark.component_mindarmour | @pytest.mark.component_mindarmour | ||||
def test_value_error(): | def test_value_error(): | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
net = Net() | net = Net() | ||||
input_shape = (1, 5) | input_shape = (1, 5) | ||||
_, classes = input_shape | _, classes = input_shape | ||||
@@ -29,9 +29,6 @@ from mindarmour.adv_robustness.attacks import IterativeGradientMethod | |||||
from mindarmour.adv_robustness.attacks import DiverseInputIterativeMethod | from mindarmour.adv_robustness.attacks import DiverseInputIterativeMethod | ||||
from mindarmour.adv_robustness.attacks import MomentumDiverseInputIterativeMethod | from mindarmour.adv_robustness.attacks import MomentumDiverseInputIterativeMethod | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
# for user | # for user | ||||
class Net(Cell): | class Net(Cell): | ||||
""" | """ | ||||
@@ -65,6 +62,7 @@ def test_basic_iterative_method(): | |||||
""" | """ | ||||
Basic iterative method unit test. | Basic iterative method unit test. | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32) | input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32) | ||||
label = np.asarray([2], np.int32) | label = np.asarray([2], np.int32) | ||||
label = np.eye(3)[label].astype(np.float32) | label = np.eye(3)[label].astype(np.float32) | ||||
@@ -87,6 +85,7 @@ def test_momentum_iterative_method(): | |||||
""" | """ | ||||
Momentum iterative method unit test. | Momentum iterative method unit test. | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32) | input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32) | ||||
label = np.asarray([2], np.int32) | label = np.asarray([2], np.int32) | ||||
label = np.eye(3)[label].astype(np.float32) | label = np.eye(3)[label].astype(np.float32) | ||||
@@ -108,6 +107,53 @@ def test_projected_gradient_descent_method(): | |||||
""" | """ | ||||
Projected gradient descent method unit test. | Projected gradient descent method unit test. | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32) | |||||
label = np.asarray([2], np.int32) | |||||
label = np.eye(3)[label].astype(np.float32) | |||||
for i in range(5): | |||||
attack = ProjectedGradientDescent(Net(), nb_iter=i + 1, loss_fn=SoftmaxCrossEntropyWithLogits(sparse=False)) | |||||
ms_adv_x = attack.generate(input_np, label) | |||||
assert np.any( | |||||
ms_adv_x != input_np), 'Projected gradient descent method: ' \ | |||||
'generate value must not be equal to' \ | |||||
' original value.' | |||||
@pytest.mark.level0 | |||||
@pytest.mark.platform_x86_gpu_training | |||||
@pytest.mark.env_card | |||||
@pytest.mark.component_mindarmour | |||||
def test_projected_gradient_descent_method_gpu(): | |||||
""" | |||||
Projected gradient descent method unit test. | |||||
""" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||||
input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32) | |||||
label = np.asarray([2], np.int32) | |||||
label = np.eye(3)[label].astype(np.float32) | |||||
for i in range(5): | |||||
attack = ProjectedGradientDescent(Net(), nb_iter=i + 1, loss_fn=SoftmaxCrossEntropyWithLogits(sparse=False)) | |||||
ms_adv_x = attack.generate(input_np, label) | |||||
assert np.any( | |||||
ms_adv_x != input_np), 'Projected gradient descent method: ' \ | |||||
'generate value must not be equal to' \ | |||||
' original value.' | |||||
@pytest.mark.level0 | |||||
@pytest.mark.platform_x86_cpu | |||||
@pytest.mark.env_card | |||||
@pytest.mark.component_mindarmour | |||||
def test_projected_gradient_descent_method_cpu(): | |||||
""" | |||||
Projected gradient descent method unit test. | |||||
""" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32) | input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32) | ||||
label = np.asarray([2], np.int32) | label = np.asarray([2], np.int32) | ||||
label = np.eye(3)[label].astype(np.float32) | label = np.eye(3)[label].astype(np.float32) | ||||
@@ -131,6 +177,7 @@ def test_diverse_input_iterative_method(): | |||||
""" | """ | ||||
Diverse input iterative method unit test. | Diverse input iterative method unit test. | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32) | input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32) | ||||
label = np.asarray([2], np.int32) | label = np.asarray([2], np.int32) | ||||
label = np.eye(3)[label].astype(np.float32) | label = np.eye(3)[label].astype(np.float32) | ||||
@@ -151,6 +198,7 @@ def test_momentum_diverse_input_iterative_method(): | |||||
""" | """ | ||||
Momentum diverse input iterative method unit test. | Momentum diverse input iterative method unit test. | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32) | input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32) | ||||
label = np.asarray([2], np.int32) | label = np.asarray([2], np.int32) | ||||
label = np.eye(3)[label].astype(np.float32) | label = np.eye(3)[label].astype(np.float32) | ||||
@@ -168,6 +216,7 @@ def test_momentum_diverse_input_iterative_method(): | |||||
@pytest.mark.env_card | @pytest.mark.env_card | ||||
@pytest.mark.component_mindarmour | @pytest.mark.component_mindarmour | ||||
def test_error(): | def test_error(): | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
attack = IterativeGradientMethod(Net(), bounds=(0.0, 1.0), loss_fn=SoftmaxCrossEntropyWithLogits(sparse=False)) | attack = IterativeGradientMethod(Net(), bounds=(0.0, 1.0), loss_fn=SoftmaxCrossEntropyWithLogits(sparse=False)) | ||||
with pytest.raises(NotImplementedError): | with pytest.raises(NotImplementedError): | ||||
input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32) | input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32) | ||||
@@ -26,9 +26,6 @@ from mindarmour.utils.logger import LogUtil | |||||
from tests.ut.python.utils.mock_net import Net | from tests.ut.python.utils.mock_net import Net | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
LOGGER = LogUtil.get_instance() | LOGGER = LogUtil.get_instance() | ||||
TAG = 'LBFGS_Test' | TAG = 'LBFGS_Test' | ||||
LOGGER.set_level('DEBUG') | LOGGER.set_level('DEBUG') | ||||
@@ -43,6 +40,7 @@ def test_lbfgs_attack(): | |||||
""" | """ | ||||
LBFGS-Attack test | LBFGS-Attack test | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
np.random.seed(123) | np.random.seed(123) | ||||
# upload trained network | # upload trained network | ||||
current_dir = os.path.dirname(os.path.abspath(__file__)) | current_dir = os.path.dirname(os.path.abspath(__file__)) | ||||
@@ -24,8 +24,6 @@ from mindspore.ops.operations import Add | |||||
from mindarmour.adv_robustness.detectors import SimilarityDetector | from mindarmour.adv_robustness.detectors import SimilarityDetector | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
class EncoderNet(Cell): | class EncoderNet(Cell): | ||||
""" | """ | ||||
@@ -66,6 +64,7 @@ def test_similarity_detector(): | |||||
""" | """ | ||||
Similarity detector unit test | Similarity detector unit test | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
# Prepare dataset | # Prepare dataset | ||||
np.random.seed(5) | np.random.seed(5) | ||||
x_train = np.random.rand(1000, 32, 32, 3).astype(np.float32) | x_train = np.random.rand(1000, 32, 32, 3).astype(np.float32) | ||||
@@ -26,8 +26,6 @@ from mindarmour.adv_robustness.detectors import ErrorBasedDetector | |||||
from mindarmour.adv_robustness.detectors import RegionBasedDetector | from mindarmour.adv_robustness.detectors import RegionBasedDetector | ||||
from mindarmour.adv_robustness.detectors import EnsembleDetector | from mindarmour.adv_robustness.detectors import EnsembleDetector | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
class Net(Cell): | class Net(Cell): | ||||
""" | """ | ||||
@@ -74,6 +72,7 @@ def test_ensemble_detector(): | |||||
""" | """ | ||||
Compute mindspore result. | Compute mindspore result. | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
np.random.seed(6) | np.random.seed(6) | ||||
adv = np.random.rand(4, 4).astype(np.float32) | adv = np.random.rand(4, 4).astype(np.float32) | ||||
model = Model(Net()) | model = Model(Net()) | ||||
@@ -97,6 +96,7 @@ def test_ensemble_detector(): | |||||
@pytest.mark.env_card | @pytest.mark.env_card | ||||
@pytest.mark.component_mindarmour | @pytest.mark.component_mindarmour | ||||
def test_error(): | def test_error(): | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
np.random.seed(6) | np.random.seed(6) | ||||
adv = np.random.rand(4, 4).astype(np.float32) | adv = np.random.rand(4, 4).astype(np.float32) | ||||
model = Model(Net()) | model = Model(Net()) | ||||
@@ -26,8 +26,6 @@ from mindspore import context | |||||
from mindarmour.adv_robustness.detectors import ErrorBasedDetector | from mindarmour.adv_robustness.detectors import ErrorBasedDetector | ||||
from mindarmour.adv_robustness.detectors import DivergenceBasedDetector | from mindarmour.adv_robustness.detectors import DivergenceBasedDetector | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
class Net(Cell): | class Net(Cell): | ||||
""" | """ | ||||
@@ -79,6 +77,7 @@ def test_mag_net(): | |||||
""" | """ | ||||
Compute mindspore result. | Compute mindspore result. | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
np.random.seed(5) | np.random.seed(5) | ||||
ori = np.random.rand(4, 4, 4).astype(np.float32) | ori = np.random.rand(4, 4, 4).astype(np.float32) | ||||
np.random.seed(6) | np.random.seed(6) | ||||
@@ -100,6 +99,7 @@ def test_mag_net_transform(): | |||||
""" | """ | ||||
Compute mindspore result. | Compute mindspore result. | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
np.random.seed(6) | np.random.seed(6) | ||||
adv = np.random.rand(4, 4, 4).astype(np.float32) | adv = np.random.rand(4, 4, 4).astype(np.float32) | ||||
model = Model(Net()) | model = Model(Net()) | ||||
@@ -117,6 +117,7 @@ def test_mag_net_divergence(): | |||||
""" | """ | ||||
Compute mindspore result. | Compute mindspore result. | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
np.random.seed(5) | np.random.seed(5) | ||||
ori = np.random.rand(4, 4, 4).astype(np.float32) | ori = np.random.rand(4, 4, 4).astype(np.float32) | ||||
np.random.seed(6) | np.random.seed(6) | ||||
@@ -140,6 +141,7 @@ def test_mag_net_divergence_transform(): | |||||
""" | """ | ||||
Compute mindspore result. | Compute mindspore result. | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
np.random.seed(6) | np.random.seed(6) | ||||
adv = np.random.rand(4, 4, 4).astype(np.float32) | adv = np.random.rand(4, 4, 4).astype(np.float32) | ||||
encoder = Model(Net()) | encoder = Model(Net()) | ||||
@@ -155,6 +157,7 @@ def test_mag_net_divergence_transform(): | |||||
@pytest.mark.env_card | @pytest.mark.env_card | ||||
@pytest.mark.component_mindarmour | @pytest.mark.component_mindarmour | ||||
def test_value_error(): | def test_value_error(): | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
np.random.seed(6) | np.random.seed(6) | ||||
adv = np.random.rand(4, 4, 4).astype(np.float32) | adv = np.random.rand(4, 4, 4).astype(np.float32) | ||||
encoder = Model(Net()) | encoder = Model(Net()) | ||||
@@ -25,9 +25,6 @@ from mindspore.ops.operations import Add | |||||
from mindarmour.adv_robustness.detectors import RegionBasedDetector | from mindarmour.adv_robustness.detectors import RegionBasedDetector | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
class Net(Cell): | class Net(Cell): | ||||
""" | """ | ||||
Construct the network of target model. | Construct the network of target model. | ||||
@@ -55,6 +52,7 @@ def test_region_based_classification(): | |||||
""" | """ | ||||
Compute mindspore result. | Compute mindspore result. | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
np.random.seed(5) | np.random.seed(5) | ||||
ori = np.random.rand(4, 4).astype(np.float32) | ori = np.random.rand(4, 4).astype(np.float32) | ||||
labels = np.array([[1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0], | labels = np.array([[1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0], | ||||
@@ -76,6 +74,7 @@ def test_region_based_classification(): | |||||
@pytest.mark.env_card | @pytest.mark.env_card | ||||
@pytest.mark.component_mindarmour | @pytest.mark.component_mindarmour | ||||
def test_value_error(): | def test_value_error(): | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
np.random.seed(5) | np.random.seed(5) | ||||
ori = np.random.rand(4, 4).astype(np.float32) | ori = np.random.rand(4, 4).astype(np.float32) | ||||
labels = np.array([[1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0], | labels = np.array([[1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0], | ||||
@@ -24,8 +24,6 @@ from mindspore import context | |||||
from mindarmour.adv_robustness.detectors import SpatialSmoothing | from mindarmour.adv_robustness.detectors import SpatialSmoothing | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
# for use | # for use | ||||
class Net(Cell): | class Net(Cell): | ||||
@@ -55,6 +53,7 @@ def test_spatial_smoothing(): | |||||
""" | """ | ||||
Compute mindspore result. | Compute mindspore result. | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
input_shape = (50, 3) | input_shape = (50, 3) | ||||
np.random.seed(1) | np.random.seed(1) | ||||
@@ -84,6 +83,7 @@ def test_spatial_smoothing_diff(): | |||||
""" | """ | ||||
Compute mindspore result. | Compute mindspore result. | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
input_shape = (50, 3) | input_shape = (50, 3) | ||||
np.random.seed(1) | np.random.seed(1) | ||||
input_np = np.random.randn(*input_shape).astype(np.float32) | input_np = np.random.randn(*input_shape).astype(np.float32) | ||||