# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import mindspore.dataset as ds import mindspore.dataset.vision.c_transforms as CV import mindspore.dataset.transforms.c_transforms as C from mindspore.dataset.vision import Inter import mindspore.common.dtype as mstype def generate_mnist_dataset(data_path, batch_size=32, repeat_size=1, num_samples=None, num_parallel_workers=1, sparse=True): """ create dataset for training or testing """ # define dataset ds1 = ds.MnistDataset(data_path, num_samples=num_samples) # define operation parameters resize_height, resize_width = 32, 32 rescale = 1.0 / 255.0 shift = 0.0 # define map operations resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) rescale_op = CV.Rescale(rescale, shift) hwc2chw_op = CV.HWC2CHW() type_cast_op = C.TypeCast(mstype.int32) # apply map operations on images if not sparse: one_hot_enco = C.OneHot(10) ds1 = ds1.map(input_columns="label", operations=one_hot_enco, num_parallel_workers=num_parallel_workers) type_cast_op = C.TypeCast(mstype.float32) ds1 = ds1.map(input_columns="label", operations=type_cast_op, num_parallel_workers=num_parallel_workers) ds1 = ds1.map(input_columns="image", operations=resize_op, num_parallel_workers=num_parallel_workers) ds1 = ds1.map(input_columns="image", operations=rescale_op, num_parallel_workers=num_parallel_workers) ds1 = ds1.map(input_columns="image", operations=hwc2chw_op, num_parallel_workers=num_parallel_workers) # apply DatasetOps buffer_size = 10000 ds1 = ds1.shuffle(buffer_size=buffer_size) ds1 = ds1.batch(batch_size, drop_remainder=True) ds1 = ds1.repeat(repeat_size) return ds1 def vgg_create_dataset100(data_home, image_size, batch_size, rank_id=0, rank_size=1, repeat_num=1, training=True, num_samples=None, shuffle=True): """Data operations.""" ds.config.set_seed(1) data_dir = os.path.join(data_home, "train") if not training: data_dir = os.path.join(data_home, "test") if num_samples is not None: data_set = ds.Cifar100Dataset(data_dir, num_shards=rank_size, shard_id=rank_id, num_samples=num_samples, shuffle=shuffle) else: data_set = ds.Cifar100Dataset(data_dir, num_shards=rank_size, shard_id=rank_id) input_columns = ["fine_label"] output_columns = ["label"] data_set = data_set.rename(input_columns=input_columns, output_columns=output_columns) data_set = data_set.project(["image", "label"]) rescale = 1.0 / 255.0 shift = 0.0 # define map operations random_crop_op = CV.RandomCrop((32, 32), (4, 4, 4, 4)) # padding_mode default CONSTANT random_horizontal_op = CV.RandomHorizontalFlip() resize_op = CV.Resize(image_size) # interpolation default BILINEAR rescale_op = CV.Rescale(rescale, shift) normalize_op = CV.Normalize((0.4465, 0.4822, 0.4914), (0.2010, 0.1994, 0.2023)) changeswap_op = CV.HWC2CHW() type_cast_op = C.TypeCast(mstype.int32) c_trans = [] if training: c_trans = [random_crop_op, random_horizontal_op] c_trans += [resize_op, rescale_op, normalize_op, changeswap_op] # apply map operations on images data_set = data_set.map(input_columns="label", operations=type_cast_op) data_set = data_set.map(input_columns="image", operations=c_trans) # apply shuffle operations data_set = data_set.shuffle(buffer_size=1000) # apply batch operations data_set = data_set.batch(batch_size=batch_size, drop_remainder=True) # apply repeat operations data_set = data_set.repeat(repeat_num) return data_set