# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fuction: Test fgsm attack about resnet50 network Usage: py.test test_cifar10_attack_fgsm.py """ import numpy as np import pytest from mindspore import Tensor from mindspore import context from mindspore.nn import Cell from mindspore.common import dtype as mstype from mindspore.ops import operations as P from mindspore.ops import functional as F from mindarmour.adv_robustness.attacks import FastGradientSignMethod from resnet_cifar10 import resnet50_cifar10 context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") class CrossEntropyLoss(Cell): def __init__(self): super(CrossEntropyLoss, self).__init__() self.cross_entropy = P.SoftmaxCrossEntropyWithLogits() self.mean = P.ReduceMean() self.one_hot = P.OneHot() self.on_value = Tensor(1.0, mstype.float32) self.off_value = Tensor(0.0, mstype.float32) def construct(self, logits, label): label = self.one_hot(label, F.shape(logits)[1], self.on_value, self.off_value) loss = self.cross_entropy(logits, label)[0] loss = self.mean(loss, (-1,)) return loss @pytest.mark.level0 @pytest.mark.env_single @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_ascend_inference def test_fast_gradient_sign_method(): """ FGSM-Attack test """ context.set_context(mode=context.GRAPH_MODE) # get network net = resnet50_cifar10(10) # create test data test_images = np.random.rand(64, 3, 224, 224).astype(np.float32) test_labels = np.random.randint(10, size=64).astype(np.int32) # attacking loss_fn = CrossEntropyLoss() attack = FastGradientSignMethod(net, eps=0.1, loss_fn=loss_fn) adv_data = attack.batch_generate(test_images, test_labels, batch_size=32) assert np.any(adv_data != test_images)