# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PointWise Attack test """ import sys import os import numpy as np import pytest from mindspore import Tensor from mindspore import context from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindarmour.attacks.black.pointwise_attack import PointWiseAttack from mindarmour.utils.logger import LogUtil from mindarmour.attacks.black.black_model import BlackModel sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), "../../../../../")) from example.mnist_demo.lenet5_net import LeNet5 context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") LOGGER = LogUtil.get_instance() TAG = 'Pointwise_Test' LOGGER.set_level('INFO') class ModelToBeAttacked(BlackModel): """model to be attack""" def __init__(self, network): super(ModelToBeAttacked, self).__init__() self._network = network def predict(self, inputs): """predict""" result = self._network(Tensor(inputs.astype(np.float32))) return result.asnumpy() @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_pointwise_attack_method(): """ Pointwise attack method unit test. """ np.random.seed(123) # upload trained network current_dir = os.path.dirname(os.path.abspath(__file__)) ckpt_name = os.path.join(current_dir, '../../test_data/trained_ckpt_file/checkpoint_lenet-10_1875.ckpt') net = LeNet5() load_dict = load_checkpoint(ckpt_name) load_param_into_net(net, load_dict) # get one mnist image input_np = np.load(os.path.join(current_dir, '../../test_data/test_images.npy'))[:3] labels = np.load(os.path.join(current_dir, '../../test_data/test_labels.npy'))[:3] model = ModelToBeAttacked(net) pre_label = np.argmax(model.predict(input_np), axis=1) LOGGER.info(TAG, 'original sample predict labels are :{}'.format(pre_label)) LOGGER.info(TAG, 'true labels are: {}'.format(labels)) attack = PointWiseAttack(model, sparse=True, is_targeted=False) is_adv, adv_data, query_times = attack.generate(input_np, pre_label) LOGGER.info(TAG, 'adv sample predict labels are: {}' .format(np.argmax(model.predict(adv_data), axis=1))) assert np.any(adv_data[is_adv][0] != input_np[is_adv][0]), 'Pointwise attack method: ' \ 'generate value must not be equal' \ ' to original value.'