# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Iterative-gradient Attack test. """ import numpy as np import pytest from mindspore.ops import operations as P from mindspore.nn import Cell from mindspore import context from mindarmour.attacks import BasicIterativeMethod from mindarmour.attacks import MomentumIterativeMethod from mindarmour.attacks import ProjectedGradientDescent from mindarmour.attacks import IterativeGradientMethod context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") # for user class Net(Cell): """ Construct the network of target model. Examples: >>> net = Net() """ def __init__(self): super(Net, self).__init__() self._softmax = P.Softmax() def construct(self, inputs): """ Construct network. Args: inputs (Tensor): Input data. """ out = self._softmax(inputs) return out @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_basic_iterative_method(): """ Basic iterative method unit test. """ input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32) label = np.asarray([2], np.int32) label = np.eye(3)[label].astype(np.float32) for i in range(5): net = Net() attack = BasicIterativeMethod(net, nb_iter=i + 1) ms_adv_x = attack.generate(input_np, label) assert np.any( ms_adv_x != input_np), 'Basic iterative method: generate value' \ ' must not be equal to original value.' @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_momentum_iterative_method(): """ Momentum iterative method unit test. """ input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32) label = np.asarray([2], np.int32) label = np.eye(3)[label].astype(np.float32) for i in range(5): attack = MomentumIterativeMethod(Net(), nb_iter=i + 1) ms_adv_x = attack.generate(input_np, label) assert np.any(ms_adv_x != input_np), 'Basic iterative method: generate' \ ' value must not be equal to' \ ' original value.' @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_projected_gradient_descent_method(): """ Projected gradient descent method unit test. """ input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32) label = np.asarray([2], np.int32) label = np.eye(3)[label].astype(np.float32) for i in range(5): attack = ProjectedGradientDescent(Net(), nb_iter=i + 1) ms_adv_x = attack.generate(input_np, label) assert np.any( ms_adv_x != input_np), 'Projected gradient descent method: ' \ 'generate value must not be equal to' \ ' original value.' @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_error(): with pytest.raises(ValueError): # check_param_multi_types assert IterativeGradientMethod(Net(), bounds=None) attack = IterativeGradientMethod(Net(), bounds=(0.0, 1.0)) with pytest.raises(NotImplementedError): input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32) label = np.asarray([2], np.int32) label = np.eye(3)[label].astype(np.float32) assert attack.generate(input_np, label)