# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Attack evaluation test. """ import numpy as np import pytest from mindarmour.evaluations.attack_evaluation import AttackEvaluate @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_attack_eval(): # prepare test data np.random.seed(1024) inputs = np.random.normal(size=(3, 512, 512, 3)) labels = np.array([[0.1, 0.1, 0.2, 0.6], [0.1, 0.7, 0.0, 0.2], [0.8, 0.1, 0.0, 0.1]]) adv_x = inputs + np.ones((3, 512, 512, 3))*0.001 adv_y = np.array([[0.1, 0.1, 0.2, 0.6], [0.1, 0.0, 0.8, 0.1], [0.0, 0.9, 0.1, 0.0]]) # create obj attack_eval = AttackEvaluate(inputs, labels, adv_x, adv_y) # run eval mr = attack_eval.mis_classification_rate() acac = attack_eval.avg_conf_adv_class() l_0, l_2, l_inf = attack_eval.avg_lp_distance() ass = attack_eval.avg_ssim() nte = attack_eval.nte() res = [mr, acac, l_0, l_2, l_inf, ass, nte] # compare expected_value = [0.6666, 0.8500, 1.0, 0.0009, 0.0001, 0.9999, 0.75] assert np.allclose(res, expected_value, 0.0001, 0.0001) @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_value_error(): # prepare test data np.random.seed(1024) inputs = np.random.normal(size=(3, 512, 512, 3)) labels = np.array([[0.1, 0.1, 0.2, 0.6], [0.1, 0.7, 0.0, 0.2], [0.8, 0.1, 0.0, 0.1]]) adv_x = inputs + np.ones((3, 512, 512, 3))*0.001 adv_y = np.array([[0.1, 0.1, 0.2, 0.6], [0.1, 0.0, 0.8, 0.1], [0.0, 0.9, 0.1, 0.0]]) # create obj with pytest.raises(ValueError) as e: assert AttackEvaluate(inputs, labels, adv_x, adv_y, targeted=True) assert str(e.value) == 'targeted attack need target_label, but got None.' @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_value_error(): # prepare test data np.random.seed(1024) inputs = np.array([]) labels = np.array([]) adv_x = inputs adv_y = np.array([]) # create obj with pytest.raises(ValueError) as e: assert AttackEvaluate(inputs, labels, adv_x, adv_y) assert str(e.value) == 'inputs must not be empty'