# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from mindspore import Model from mindspore import context from mindspore import load_checkpoint, load_param_into_net from mindarmour.fuzz_testing import Fuzzer from mindarmour.fuzz_testing import KMultisectionNeuronCoverage from mindarmour.utils import LogUtil from examples.common.dataset.data_processing import generate_mnist_dataset from examples.common.networks.lenet5.lenet5_net_for_fuzzing import LeNet5 LOGGER = LogUtil.get_instance() TAG = 'Fuzz_test' LOGGER.set_level('INFO') def test_lenet_mnist_fuzzing(): # upload trained network ckpt_path = '../common/networks/lenet5/trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' net = LeNet5() load_dict = load_checkpoint(ckpt_path) load_param_into_net(net, load_dict) model = Model(net) mutate_config = [ {'method': 'GaussianBlur', 'params': {'ksize': [1, 2, 3, 5], 'auto_param': [True, False]}}, {'method': 'MotionBlur', 'params': {'degree': [1, 2, 5], 'angle': [45, 10, 100, 140, 210, 270, 300], 'auto_param': [True]}}, {'method': 'GradientBlur', 'params': {'point': [[10, 10]], 'auto_param': [True]}}, {'method': 'UniformNoise', 'params': {'factor': [0.1, 0.2, 0.3], 'auto_param': [False, True]}}, {'method': 'GaussianNoise', 'params': {'factor': [0.1, 0.2, 0.3], 'auto_param': [False, True]}}, {'method': 'SaltAndPepperNoise', 'params': {'factor': [0.1, 0.2, 0.3], 'auto_param': [False, True]}}, {'method': 'NaturalNoise', 'params': {'ratio': [0.1, 0.2, 0.3], 'k_x_range': [(1, 3), (1, 5)], 'k_y_range': [(1, 5)], 'auto_param': [False, True]}}, {'method': 'Contrast', 'params': {'alpha': [0.5, 1, 1.5], 'beta': [-10, 0, 10], 'auto_param': [False, True]}}, {'method': 'GradientLuminance', 'params': {'color_start': [(0, 0, 0)], 'color_end': [(255, 255, 255)], 'start_point': [(10, 10)], 'scope': [0.5], 'pattern': ['light'], 'bright_rate': [0.3], 'mode': ['circle'], 'auto_param': [False, True]}}, {'method': 'Translate', 'params': {'x_bias': [0, 0.05, -0.05], 'y_bias': [0, -0.05, 0.05], 'auto_param': [False, True]}}, {'method': 'Scale', 'params': {'factor_x': [1, 0.9], 'factor_y': [1, 0.9], 'auto_param': [False, True]}}, {'method': 'Shear', 'params': {'factor': [0.2, 0.1], 'direction': ['horizontal', 'vertical'], 'auto_param': [False, True]}}, {'method': 'Rotate', 'params': {'angle': [20, 90], 'auto_param': [False, True]}}, {'method': 'Perspective', 'params': {'ori_pos': [[[0, 0], [0, 800], [800, 0], [800, 800]]], 'dst_pos': [[[50, 0], [0, 800], [780, 0], [800, 800]]], 'auto_param': [False, True]}}, {'method': 'Curve', 'params': {'curves': [5], 'depth': [2], 'mode': ['vertical'], 'auto_param': [False, True]}}, {'method': 'FGSM', 'params': {'eps': [0.3, 0.2, 0.4], 'alpha': [0.1], 'bounds': [(0, 1)]}}, {'method': 'PGD', 'params': {'eps': [0.1, 0.2, 0.4], 'eps_iter': [0.05, 0.1], 'nb_iter': [1, 3]}}, {'method': 'MDIIM', 'params': {'eps': [0.1, 0.2, 0.4], 'prob': [0.5, 0.1], 'norm_level': [1, 2, '1', '2', 'l1', 'l2', 'inf', 'np.inf', 'linf']}} ] # get training data data_list = "../common/dataset/MNIST/train" batch_size = 32 ds = generate_mnist_dataset(data_list, batch_size, sparse=False) train_images = [] for data in ds.create_tuple_iterator(output_numpy=True): images = data[0].astype(np.float32) train_images.append(images) train_images = np.concatenate(train_images, axis=0) # fuzz test with original test data # get test data data_list = "../common/dataset/MNIST/test" batch_size = 32 ds = generate_mnist_dataset(data_list, batch_size, sparse=False) test_images = [] test_labels = [] for data in ds.create_tuple_iterator(output_numpy=True): images = data[0].astype(np.float32) labels = data[1] test_images.append(images) test_labels.append(labels) test_images = np.concatenate(test_images, axis=0) test_labels = np.concatenate(test_labels, axis=0) initial_seeds = [] # make initial seeds for img, label in zip(test_images, test_labels): initial_seeds.append([img, label]) coverage = KMultisectionNeuronCoverage(model, train_images, segmented_num=100, incremental=True) kmnc = coverage.get_metrics(test_images[:100]) print('KMNC of initial seeds is: ', kmnc) initial_seeds = initial_seeds[:100] model_fuzz_test = Fuzzer(model) _, _, _, _, metrics = model_fuzz_test.fuzzing(mutate_config, initial_seeds, coverage, evaluate=True, max_iters=10, mutate_num_per_seed=20) if metrics: for key in metrics: print(key + ': ', metrics[key]) if __name__ == '__main__': # device_target can be "CPU"GPU, "" or "Ascend" context.set_context(mode=context.GRAPH_MODE, device_target="CPU") test_lenet_mnist_fuzzing()