# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ DeepFool-Attack test. """ import numpy as np import pytest import mindspore.ops.operations as P from mindspore.nn import Cell from mindspore import context from mindspore import Tensor from mindarmour.adv_robustness.attacks import DeepFool # for user class Net(Cell): """ Construct the network of target model. Examples: >>> net = Net() """ def __init__(self): """ Introduce the layers used for network construction. """ super(Net, self).__init__() self._softmax = P.Softmax() def construct(self, inputs): """ Construct network. Args: inputs (Tensor): Input data. """ out = self._softmax(inputs) return out class Net2(Cell): """ Construct the network of target model, specifically for detection model test case. Examples: >>> net = Net2() """ def __init__(self): super(Net2, self).__init__() self._softmax = P.Softmax() def construct(self, inputs1, inputs2): out1 = self._softmax(inputs1) out2 = self._softmax(inputs2) return out2, out1 @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_deepfool_attack_ascend(): """ Feature: Deepfool-Attack test for ascend Description: Given multiple images, we want to make sure the adversarial examples generated are different from the images Expectation: input_np != ms_adv_x """ context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") net = Net() input_shape = (1, 5) _, classes = input_shape input_np = np.array([[0.1, 0.2, 0.7, 0.5, 0.4]]).astype(np.float32) input_me = Tensor(input_np) true_labels = np.argmax(net(input_me).asnumpy(), axis=1) attack = DeepFool(net, classes, max_iters=10, norm_level=2, bounds=(0.0, 1.0)) adv_data = attack.generate(input_np, true_labels) # expected adv value expect_value = np.asarray([[0.10300991, 0.20332647, 0.59308802, 0.59651263, 0.40406296]]) assert np.allclose(adv_data, expect_value), 'mindspore deepfool_method' \ ' implementation error, ms_adv_x != expect_value' @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_card @pytest.mark.component_mindarmour def test_deepfool_attack_cpu(): """ Feature: Deepfool-Attack test for cpu Description: Given multiple images, we want to make sure the adversarial examples generated are different from the images Expectation: input_np != ms_adv_x """ context.set_context(mode=context.GRAPH_MODE, device_target="CPU") net = Net() input_shape = (1, 5) _, classes = input_shape input_np = np.array([[0.1, 0.2, 0.7, 0.5, 0.4]]).astype(np.float32) input_me = Tensor(input_np) true_labels = np.argmax(net(input_me).asnumpy(), axis=1) attack = DeepFool(net, classes, max_iters=10, norm_level=2, bounds=(0.0, 1.0)) adv_data = attack.generate(input_np, true_labels) # expected adv value expect_value = np.asarray([[0.10300991, 0.20332647, 0.59308802, 0.59651263, 0.40406296]]) assert np.allclose(adv_data, expect_value), 'mindspore deepfool_method' \ ' implementation error, ms_adv_x != expect_value' @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_deepfool_attack_detection_ascend(): """ Feature: Deepfool-Attack-Detection test for ascend Description: Given multiple images, we want to make sure the adversarial examples generated are different from the images Expectation: input_np != ms_adv_x """ context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") net = Net2() inputs1_np = np.random.random((2, 10, 10)).astype(np.float32) inputs2_np = np.random.random((2, 10, 5)).astype(np.float32) gt_boxes, gt_logits = net(Tensor(inputs1_np), Tensor(inputs2_np)) gt_boxes, gt_logits = gt_boxes.asnumpy(), gt_logits.asnumpy() gt_labels = np.argmax(gt_logits, axis=2) num_classes = 10 attack = DeepFool(net, num_classes, model_type='detection', reserve_ratio=0.3, bounds=(0.0, 1.0)) adv_data = attack.generate((inputs1_np, inputs2_np), (gt_boxes, gt_labels)) assert np.any(adv_data != inputs1_np) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_card @pytest.mark.component_mindarmour def test_deepfool_attack_detection_cpu(): """ Feature: Deepfool-Attack-Detection test for cpu Description: Given multiple images, we want to make sure the adversarial examples generated are different from the images Expectation: input_np != ms_adv_x """ context.set_context(mode=context.GRAPH_MODE, device_target="CPU") net = Net2() inputs1_np = np.random.random((2, 10, 10)).astype(np.float32) inputs2_np = np.random.random((2, 10, 5)).astype(np.float32) gt_boxes, gt_logits = net(Tensor(inputs1_np), Tensor(inputs2_np)) gt_boxes, gt_logits = gt_boxes.asnumpy(), gt_logits.asnumpy() gt_labels = np.argmax(gt_logits, axis=2) num_classes = 10 attack = DeepFool(net, num_classes, model_type='detection', reserve_ratio=0.3, bounds=(0.0, 1.0)) adv_data = attack.generate((inputs1_np, inputs2_np), (gt_boxes, gt_labels)) assert np.any(adv_data != inputs1_np) @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_deepfool_attack_inf_ascend(): """ Feature: Deepfool-Attack with inf-norm test for ascend Description: Given multiple images, we want to make sure the adversarial examples generated are different from the images Expectation: input_np != ms_adv_x """ context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") net = Net() input_shape = (1, 5) _, classes = input_shape input_np = np.array([[0.1, 0.2, 0.7, 0.5, 0.4]]).astype(np.float32) input_me = Tensor(input_np) true_labels = np.argmax(net(input_me).asnumpy(), axis=1) attack = DeepFool(net, classes, max_iters=10, norm_level=np.inf, bounds=(0.0, 1.0)) adv_data = attack.generate(input_np, true_labels) assert np.any(input_np != adv_data) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_card @pytest.mark.component_mindarmour def test_deepfool_attack_inf_cpu(): """ Feature: Deepfool-Attack with inf-norm test for cpu Description: Given multiple images, we want to make sure the adversarial examples generated are different from the images Expectation: input_np != ms_adv_x """ context.set_context(mode=context.GRAPH_MODE, device_target="CPU") net = Net() input_shape = (1, 5) _, classes = input_shape input_np = np.array([[0.1, 0.2, 0.7, 0.5, 0.4]]).astype(np.float32) input_me = Tensor(input_np) true_labels = np.argmax(net(input_me).asnumpy(), axis=1) attack = DeepFool(net, classes, max_iters=10, norm_level=np.inf, bounds=(0.0, 1.0)) adv_data = attack.generate(input_np, true_labels) assert np.any(input_np != adv_data) @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_value_error_ascend(): """ Feature: value error test for ascend Description: value error for deep fool Expectation: attack.generate works """ context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") net = Net() input_shape = (1, 5) _, classes = input_shape input_np = np.array([[0.1, 0.2, 0.7, 0.5, 0.4]]).astype(np.float32) input_me = Tensor(input_np) true_labels = np.argmax(net(input_me).asnumpy(), axis=1) with pytest.raises(NotImplementedError): # norm_level=0 is not available attack = DeepFool(net, classes, max_iters=10, norm_level=1, bounds=(0.0, 1.0)) assert attack.generate(input_np, true_labels) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_card @pytest.mark.component_mindarmour def test_value_error_cpu(): """ Feature: value error test for cpu Description: value error for deep fool Expectation: attack.generate works """ context.set_context(mode=context.GRAPH_MODE, device_target="CPU") net = Net() input_shape = (1, 5) _, classes = input_shape input_np = np.array([[0.1, 0.2, 0.7, 0.5, 0.4]]).astype(np.float32) input_me = Tensor(input_np) true_labels = np.argmax(net(input_me).asnumpy(), axis=1) with pytest.raises(NotImplementedError): # norm_level=0 is not available attack = DeepFool(net, classes, max_iters=10, norm_level=1, bounds=(0.0, 1.0)) assert attack.generate(input_np, true_labels)