# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Suppress Privacy model test. """ import pytest import numpy as np from mindspore import nn from mindspore import context from mindspore.train.callback import ModelCheckpoint from mindspore.train.callback import CheckpointConfig from mindspore.train.callback import LossMonitor from mindspore.nn.metrics import Accuracy import mindspore.dataset as ds from ut.python.utils.mock_net import Net as LeNet5 from mindarmour.privacy.sup_privacy import SuppressModel from mindarmour.privacy.sup_privacy import SuppressMasker from mindarmour.privacy.sup_privacy import SuppressPrivacyFactory from mindarmour.privacy.sup_privacy import MaskLayerDes def dataset_generator(batch_size, batches): """mock training data.""" data = np.random.random((batches*batch_size, 1, 32, 32)).astype( np.float32) label = np.random.randint(0, 10, batches*batch_size).astype(np.int32) for i in range(batches): yield data[i*batch_size:(i + 1)*batch_size],\ label[i*batch_size:(i + 1)*batch_size] @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_suppress_model_with_pynative_mode(): context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") networks_l5 = LeNet5() epochs = 5 batch_num = 10 batch_size = 32 mask_times = 10 lr = 0.01 masklayers_lenet5 = [] masklayers_lenet5.append(MaskLayerDes("conv1.weight", False, False, -1)) suppress_ctrl_instance = SuppressPrivacyFactory().create(policy="local_train", end_epoch=epochs, batch_num=batch_num, start_epoch=1, mask_times=mask_times, networks=networks_l5, lr=lr, sparse_end=0.50, sparse_start=0.0, mask_layers=masklayers_lenet5) net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") net_opt = nn.SGD(networks_l5.trainable_params(), lr) model_instance = SuppressModel( network=networks_l5, loss_fn=net_loss, optimizer=net_opt, metrics={"Accuracy": Accuracy()}) model_instance.link_suppress_ctrl(suppress_ctrl_instance) suppress_masker = SuppressMasker(model=model_instance, suppress_ctrl=suppress_ctrl_instance) config_ck = CheckpointConfig(save_checkpoint_steps=batch_num, keep_checkpoint_max=10) ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet", directory="./trained_ckpt_file/", config=config_ck) ds_train = ds.GeneratorDataset(dataset_generator(batch_size, batch_num), ['data', 'label']) model_instance.train(epochs, ds_train, callbacks=[ckpoint_cb, LossMonitor(), suppress_masker], dataset_sink_mode=False)