# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ EnsembleDetector Test """ import numpy as np import pytest from mindspore.nn import Cell from mindspore.ops.operations import TensorAdd from mindspore.train.model import Model from mindspore import context from mindarmour.detectors.mag_net import ErrorBasedDetector from mindarmour.detectors.region_based_detector import RegionBasedDetector from mindarmour.detectors.ensemble_detector import EnsembleDetector context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") class Net(Cell): """ Construct the network of target model. """ def __init__(self): super(Net, self).__init__() self.add = TensorAdd() def construct(self, inputs): """ Construct network. Args: inputs (Tensor): Input data. """ return self.add(inputs, inputs) class AutoNet(Cell): """ Construct the network of target model. """ def __init__(self): super(AutoNet, self).__init__() self.add = TensorAdd() def construct(self, inputs): """ Construct network. Args: inputs (Tensor): Input data. """ return self.add(inputs, inputs) @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_ensemble_detector(): """ Compute mindspore result. """ np.random.seed(6) adv = np.random.rand(4, 4).astype(np.float32) model = Model(Net()) auto_encoder = Model(AutoNet()) random_label = np.random.randint(10, size=4) labels = np.eye(10)[random_label] magnet_detector = ErrorBasedDetector(auto_encoder) region_detector = RegionBasedDetector(model) # use this to enable radius in region_detector region_detector.fit(adv, labels) detectors = [magnet_detector, region_detector] detector = EnsembleDetector(detectors) detected_res = detector.detect(adv) expected_value = np.array([0, 1, 0, 0]) assert np.all(detected_res == expected_value) @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_error(): np.random.seed(6) adv = np.random.rand(4, 4).astype(np.float32) model = Model(Net()) auto_encoder = Model(AutoNet()) random_label = np.random.randint(10, size=4) labels = np.eye(10)[random_label] magnet_detector = ErrorBasedDetector(auto_encoder) region_detector = RegionBasedDetector(model) # use this to enable radius in region_detector detectors = [magnet_detector, region_detector] detector = EnsembleDetector(detectors) with pytest.raises(NotImplementedError): assert detector.fit(adv, labels)