# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """target attack""" import numpy as np import matplotlib.image as mp from mindspore import context import adversarial_attack from FaceRecognition.eval import get_model context.set_context(mode=context.GRAPH_MODE, device_target="GPU") if __name__ == '__main__': inputs = adversarial_attack.load_data('photos/input/') targets = adversarial_attack.load_data('photos/target/') net = get_model() adversarial = adversarial_attack.FaceAdversarialAttack(inputs[0], targets[0], net) ATTACK_METHOD = "target_attack" tensor_dict = adversarial.train(attack_method=ATTACK_METHOD) mp.imsave('./outputs/adversarial_example.jpg', np.transpose(tensor_dict.get("adversarial_tensor").asnumpy(), (1, 2, 0))) mp.imsave('./outputs/mask.jpg', np.transpose(tensor_dict.get("mask_tensor").asnumpy(), (1, 2, 0))) mp.imsave('./outputs/input_image.jpg', np.transpose(tensor_dict.get("processed_input_tensor").asnumpy(), (1, 2, 0))) mp.imsave('./outputs/target_image.jpg', np.transpose(tensor_dict.get("processed_target_tensor").asnumpy(), (1, 2, 0))) adversarial.test_target_attack()