# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Inversion attack test """ import pytest import numpy as np import mindspore.context as context from mindarmour.privacy.evaluation.inversion_attack import ImageInversionAttack from tests.ut.python.utils.mock_net import Net context.set_context(mode=context.GRAPH_MODE) @pytest.mark.level0 @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_arm_ascend_training @pytest.mark.env_onecard @pytest.mark.component_mindarmour def test_inversion_attack(): net = Net() original_images = np.random.random((2, 1, 32, 32)).astype(np.float32) target_features = np.random.random((2, 10)).astype(np.float32) inversion_attack = ImageInversionAttack(net, input_shape=(1, 32, 32), input_bound=(0, 1), loss_weights=[1, 0.2, 5]) inversion_images = inversion_attack.generate(target_features, iters=10) avg_ssim = inversion_attack.evaluate(original_images, inversion_images) assert 0 < avg_ssim[1] < 1 assert target_features.shape[0] == inversion_images.shape[0] @pytest.mark.level0 @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_arm_ascend_training @pytest.mark.env_onecard @pytest.mark.component_mindarmour def test_inversion_attack2(): net = Net() original_images = np.random.random((2, 1, 32, 32)).astype(np.float32) target_features = np.random.random((2, 10)).astype(np.float32) inversion_attack = ImageInversionAttack(net, input_shape=(1, 32, 32), input_bound=(0, 1), loss_weights=[1, 0.2, 5]) inversion_images = inversion_attack.generate(target_features, iters=10) true_labels = np.array([1, 2]) new_net = Net() indexes = inversion_attack.evaluate(original_images, inversion_images, true_labels, new_net) assert len(indexes) == 3