|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- from mindspore import Model
- from mindspore import context
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
-
- from mindarmour.fuzz_testing.model_coverage_metrics import NeuronCoverage, TopKNeuronCoverage, NeuronBoundsCoverage,\
- SuperNeuronActivateCoverage, KMultisectionNeuronCoverage
- from mindarmour.utils.logger import LogUtil
-
- from examples.common.dataset.data_processing import generate_mnist_dataset
- from examples.common.networks.lenet5.lenet5_net_for_fuzzing import LeNet5
-
- LOGGER = LogUtil.get_instance()
- TAG = 'Neuron coverage test'
- LOGGER.set_level('INFO')
-
-
- def test_lenet_mnist_coverage():
- # upload trained network
- ckpt_path = '../common/networks/lenet5/trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
- net = LeNet5()
- load_dict = load_checkpoint(ckpt_path)
- load_param_into_net(net, load_dict)
- model = Model(net)
-
- # get training data
- data_list = "../common/dataset/MNIST/train"
- batch_size = 32
- ds = generate_mnist_dataset(data_list, batch_size, sparse=True)
- train_images = []
- for data in ds.create_tuple_iterator(output_numpy=True):
- images = data[0].astype(np.float32)
- train_images.append(images)
- train_images = np.concatenate(train_images, axis=0)
-
- # fuzz test with original test data
- # get test data
- data_list = "../common/dataset/MNIST/test"
- batch_size = 32
- ds = generate_mnist_dataset(data_list, batch_size, sparse=True)
- test_images = []
- test_labels = []
- for data in ds.create_tuple_iterator(output_numpy=True):
- images = data[0].astype(np.float32)
- labels = data[1]
- test_images.append(images)
- test_labels.append(labels)
- test_images = np.concatenate(test_images, axis=0)
-
- # initialize fuzz test with training dataset
- nc = NeuronCoverage(model, threshold=0.1)
- nc_metric = nc.get_metrics(test_images)
-
- tknc = TopKNeuronCoverage(model, top_k=3)
- tknc_metrics = tknc.get_metrics(test_images)
-
- snac = SuperNeuronActivateCoverage(model, train_images)
- snac_metrics = snac.get_metrics(test_images)
-
- nbc = NeuronBoundsCoverage(model, train_images)
- nbc_metrics = nbc.get_metrics(test_images)
-
- kmnc = KMultisectionNeuronCoverage(model, train_images, segmented_num=100)
- kmnc_metrics = kmnc.get_metrics(test_images)
-
- print('KMNC of this test is: ', kmnc_metrics)
- print('NBC of this test is: ', nbc_metrics)
- print('SNAC of this test is: ', snac_metrics)
- print('NC of this test is: ', nc_metric)
- print('TKNC of this test is: ', tknc_metrics)
-
-
- if __name__ == '__main__':
- # device_target can be "CPU", "GPU" or "Ascend"
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
- test_lenet_mnist_coverage()
|