|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- different Privacy test.
- """
- import pytest
-
- from mindspore import context
- from mindspore import Tensor
- from mindspore.common import dtype as mstype
- from mindarmour.diff_privacy import NoiseAdaGaussianRandom
- from mindarmour.diff_privacy import AdaClippingWithGaussianRandom
- from mindarmour.diff_privacy import NoiseMechanismsFactory
- from mindarmour.diff_privacy import ClipMechanismsFactory
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- @pytest.mark.component_mindarmour
- def test_graph_factory():
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- grad = Tensor([0.3, 0.2, 0.4], mstype.float32)
- norm_bound = 1.0
- initial_noise_multiplier = 0.1
- alpha = 0.5
- noise_update = 'Step'
- factory = NoiseMechanismsFactory()
- noise_mech = factory.create('Gaussian',
- norm_bound,
- initial_noise_multiplier)
- noise = noise_mech(grad)
- print('Gaussian noise: ', noise)
- ada_noise_mech = factory.create('AdaGaussian',
- norm_bound,
- initial_noise_multiplier,
- noise_decay_rate=alpha,
- noise_update=noise_update)
- ada_noise = ada_noise_mech(grad)
- print('ada noise: ', ada_noise)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- @pytest.mark.component_mindarmour
- def test_pynative_factory():
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- grad = Tensor([0.3, 0.2, 0.4], mstype.float32)
- norm_bound = 1.0
- initial_noise_multiplier = 0.1
- alpha = 0.5
- noise_update = 'Step'
- factory = NoiseMechanismsFactory()
- noise_mech = factory.create('Gaussian',
- norm_bound,
- initial_noise_multiplier)
- noise = noise_mech(grad)
- print('Gaussian noise: ', noise)
- ada_noise_mech = factory.create('AdaGaussian',
- norm_bound,
- initial_noise_multiplier,
- noise_decay_rate=alpha,
- noise_update=noise_update)
- ada_noise = ada_noise_mech(grad)
- print('ada noise: ', ada_noise)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- @pytest.mark.component_mindarmour
- def test_pynative_gaussian():
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- grad = Tensor([0.3, 0.2, 0.4], mstype.float32)
- norm_bound = 1.0
- initial_noise_multiplier = 0.1
- alpha = 0.5
- noise_update = 'Step'
- factory = NoiseMechanismsFactory()
- noise_mech = factory.create('Gaussian',
- norm_bound,
- initial_noise_multiplier)
- noise = noise_mech(grad)
- print('Gaussian noise: ', noise)
- ada_noise_mech = factory.create('AdaGaussian',
- norm_bound,
- initial_noise_multiplier,
- noise_decay_rate=alpha,
- noise_update=noise_update)
- ada_noise = ada_noise_mech(grad)
- print('ada noise: ', ada_noise)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- @pytest.mark.component_mindarmour
- def test_graph_ada_gaussian():
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- grad = Tensor([0.3, 0.2, 0.4], mstype.float32)
- norm_bound = 1.0
- initial_noise_multiplier = 0.1
- noise_decay_rate = 0.5
- noise_update = 'Step'
- ada_noise_mech = NoiseAdaGaussianRandom(norm_bound,
- initial_noise_multiplier,
- seed=0,
- noise_decay_rate=noise_decay_rate,
- noise_update=noise_update)
- res = ada_noise_mech(grad)
- print(res)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- @pytest.mark.component_mindarmour
- def test_pynative_ada_gaussian():
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- grad = Tensor([0.3, 0.2, 0.4], mstype.float32)
- norm_bound = 1.0
- initial_noise_multiplier = 0.1
- noise_decay_rate = 0.5
- noise_update = 'Step'
- ada_noise_mech = NoiseAdaGaussianRandom(norm_bound,
- initial_noise_multiplier,
- seed=0,
- noise_decay_rate=noise_decay_rate,
- noise_update=noise_update)
- res = ada_noise_mech(grad)
- print(res)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- @pytest.mark.component_mindarmour
- def test_graph_exponential():
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- grad = Tensor([0.3, 0.2, 0.4], mstype.float32)
- norm_bound = 1.0
- initial_noise_multiplier = 0.1
- alpha = 0.5
- noise_update = 'Exp'
- factory = NoiseMechanismsFactory()
- ada_noise = factory.create('AdaGaussian',
- norm_bound,
- initial_noise_multiplier,
- noise_decay_rate=alpha,
- noise_update=noise_update)
- ada_noise = ada_noise(grad)
- print('ada noise: ', ada_noise)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- @pytest.mark.component_mindarmour
- def test_pynative_exponential():
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- grad = Tensor([0.3, 0.2, 0.4], mstype.float32)
- norm_bound = 1.0
- initial_noise_multiplier = 0.1
- alpha = 0.5
- noise_update = 'Exp'
- factory = NoiseMechanismsFactory()
- ada_noise = factory.create('AdaGaussian',
- norm_bound,
- initial_noise_multiplier,
- noise_decay_rate=alpha,
- noise_update=noise_update)
- ada_noise = ada_noise(grad)
- print('ada noise: ', ada_noise)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- @pytest.mark.component_mindarmour
- def test_ada_clip_gaussian_random_pynative():
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- decay_policy = 'Linear'
- beta = Tensor(0.5, mstype.float32)
- norm_bound = Tensor(1.0, mstype.float32)
- beta_stddev = 0.1
- learning_rate = 0.1
- target_unclipped_quantile = 0.3
- ada_clip = AdaClippingWithGaussianRandom(decay_policy=decay_policy,
- learning_rate=learning_rate,
- target_unclipped_quantile=target_unclipped_quantile,
- fraction_stddev=beta_stddev,
- seed=1)
- next_norm_bound = ada_clip(beta, norm_bound)
- print('Liner next norm clip:', next_norm_bound)
-
- decay_policy = 'Geometric'
- ada_clip = AdaClippingWithGaussianRandom(decay_policy=decay_policy,
- learning_rate=learning_rate,
- target_unclipped_quantile=target_unclipped_quantile,
- fraction_stddev=beta_stddev,
- seed=1)
- next_norm_bound = ada_clip(beta, norm_bound)
- print('Geometric next norm clip:', next_norm_bound)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- @pytest.mark.component_mindarmour
- def test_ada_clip_gaussian_random_graph():
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- decay_policy = 'Linear'
- beta = Tensor(0.5, mstype.float32)
- norm_bound = Tensor(1.0, mstype.float32)
- beta_stddev = 0.1
- learning_rate = 0.1
- target_unclipped_quantile = 0.3
- ada_clip = AdaClippingWithGaussianRandom(decay_policy=decay_policy,
- learning_rate=learning_rate,
- target_unclipped_quantile=target_unclipped_quantile,
- fraction_stddev=beta_stddev,
- seed=1)
- next_norm_bound = ada_clip(beta, norm_bound)
- print('Liner next norm clip:', next_norm_bound)
-
- decay_policy = 'Geometric'
- ada_clip = AdaClippingWithGaussianRandom(decay_policy=decay_policy,
- learning_rate=learning_rate,
- target_unclipped_quantile=target_unclipped_quantile,
- fraction_stddev=beta_stddev,
- seed=1)
- next_norm_bound = ada_clip(beta, norm_bound)
- print('Geometric next norm clip:', next_norm_bound)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- @pytest.mark.component_mindarmour
- def test_pynative_clip_mech_factory():
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- decay_policy = 'Linear'
- beta = Tensor(0.5, mstype.float32)
- norm_bound = Tensor(1.0, mstype.float32)
- beta_stddev = 0.1
- learning_rate = 0.1
- target_unclipped_quantile = 0.3
- factory = ClipMechanismsFactory()
- ada_clip = factory.create('Gaussian',
- decay_policy=decay_policy,
- learning_rate=learning_rate,
- target_unclipped_quantile=target_unclipped_quantile,
- fraction_stddev=beta_stddev)
- next_norm_bound = ada_clip(beta, norm_bound)
- print('next_norm_bound: ', next_norm_bound)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- @pytest.mark.component_mindarmour
- def test_graph_clip_mech_factory():
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- decay_policy = 'Linear'
- beta = Tensor(0.5, mstype.float32)
- norm_bound = Tensor(1.0, mstype.float32)
- beta_stddev = 0.1
- learning_rate = 0.1
- target_unclipped_quantile = 0.3
- factory = ClipMechanismsFactory()
- ada_clip = factory.create('Gaussian',
- decay_policy=decay_policy,
- learning_rate=learning_rate,
- target_unclipped_quantile=target_unclipped_quantile,
- fraction_stddev=beta_stddev)
- next_norm_bound = ada_clip(beta, norm_bound)
- print('next_norm_bound: ', next_norm_bound)
|