|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Model-fuzz coverage test.
- """
- import numpy as np
- import pytest
-
- from mindspore import nn
- from mindspore.nn import Cell, SoftmaxCrossEntropyWithLogits
- from mindspore.train import Model
- from mindspore import context
- from mindspore.ops import TensorSummary
-
- from mindarmour.adv_robustness.attacks import FastGradientSignMethod
- from mindarmour.utils.logger import LogUtil
- from mindarmour.fuzz_testing import NeuronCoverage, TopKNeuronCoverage, SuperNeuronActivateCoverage, \
- NeuronBoundsCoverage, KMultisectionNeuronCoverage
-
- LOGGER = LogUtil.get_instance()
- TAG = 'Neuron coverage test'
- LOGGER.set_level('INFO')
-
-
- # for user
- class Net(Cell):
- """
- Construct the network of target model.
-
- Examples:
- >>> net = Net()
- """
-
- def __init__(self):
- """
- Introduce the layers used for network construction.
- """
- super(Net, self).__init__()
- self._relu = nn.ReLU()
- self.summary = TensorSummary()
-
- def construct(self, inputs):
- """
- Construct network.
-
- Args:
- inputs (Tensor): Input data.
- """
- self.summary('input', inputs)
-
- out = self._relu(inputs)
- self.summary('1', out)
- return out
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_lenet_mnist_coverage_cpu():
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
- # load network
- net = Net()
- model = Model(net)
-
- # initialize fuzz test with training dataset
- training_data = (np.random.random((10000, 10))*20).astype(np.float32)
-
- # fuzz test with original test data
- # get test data
- test_data = (np.random.random((2000, 10))*20).astype(np.float32)
- test_labels = np.random.randint(0, 10, 2000).astype(np.int32)
-
- nc = NeuronCoverage(model, threshold=0.1)
- nc_metric = nc.get_metrics(test_data)
-
- tknc = TopKNeuronCoverage(model, top_k=3)
- tknc_metrics = tknc.get_metrics(test_data)
-
- snac = SuperNeuronActivateCoverage(model, training_data)
- snac_metrics = snac.get_metrics(test_data)
-
- nbc = NeuronBoundsCoverage(model, training_data)
- nbc_metrics = nbc.get_metrics(test_data)
-
- kmnc = KMultisectionNeuronCoverage(model, training_data, segmented_num=100)
- kmnc_metrics = kmnc.get_metrics(test_data)
-
- print('KMNC of this test is: ', kmnc_metrics)
- print('NBC of this test is: ', nbc_metrics)
- print('SNAC of this test is: ', snac_metrics)
- print('NC of this test is: ', nc_metric)
- print('TKNC of this test is: ', tknc_metrics)
-
- # generate adv_data
- loss = SoftmaxCrossEntropyWithLogits(sparse=True)
- attack = FastGradientSignMethod(net, eps=0.3, loss_fn=loss)
- adv_data = attack.batch_generate(test_data, test_labels, batch_size=32)
- nc_metric = nc.get_metrics(adv_data)
- tknc_metrics = tknc.get_metrics(adv_data)
- snac_metrics = snac.get_metrics(adv_data)
- nbc_metrics = nbc.get_metrics(adv_data)
- kmnc_metrics = kmnc.get_metrics(adv_data)
- print('KMNC of adv data is: ', kmnc_metrics)
- print('NBC of adv data is: ', nbc_metrics)
- print('SNAC of adv data is: ', snac_metrics)
- print('NC of adv data is: ', nc_metric)
- print('TKNC of adv data is: ', tknc_metrics)
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_lenet_mnist_coverage_ascend():
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- # load network
- net = Net()
- model = Model(net)
-
- # initialize fuzz test with training dataset
- training_data = (np.random.random((10000, 10))*20).astype(np.float32)
-
- # fuzz test with original test data
- # get test data
- test_data = (np.random.random((2000, 10))*20).astype(np.float32)
- nc = NeuronCoverage(model, threshold=0.1)
- nc_metric = nc.get_metrics(test_data)
-
- tknc = TopKNeuronCoverage(model, top_k=3)
- tknc_metrics = tknc.get_metrics(test_data)
-
- snac = SuperNeuronActivateCoverage(model, training_data)
- snac_metrics = snac.get_metrics(test_data)
-
- nbc = NeuronBoundsCoverage(model, training_data)
- nbc_metrics = nbc.get_metrics(test_data)
-
- kmnc = KMultisectionNeuronCoverage(model, training_data, segmented_num=100)
- kmnc_metrics = kmnc.get_metrics(test_data)
-
- print('KMNC of this test is: ', kmnc_metrics)
- print('NBC of this test is: ', nbc_metrics)
- print('SNAC of this test is: ', snac_metrics)
- print('NC of this test is: ', nc_metric)
- print('TKNC of this test is: ', tknc_metrics)
|