|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- from mindspore import Model
- from mindspore import context
- from mindspore.nn import SoftmaxCrossEntropyWithLogits
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
-
- from mindarmour.adv_robustness.attacks import FastGradientSignMethod
- from mindarmour.fuzz_testing import ModelCoverageMetrics
- from mindarmour.utils.logger import LogUtil
-
- from examples.common.dataset.data_processing import generate_mnist_dataset
- from examples.common.networks.lenet5.lenet5_net import LeNet5
-
- LOGGER = LogUtil.get_instance()
- TAG = 'Neuron coverage test'
- LOGGER.set_level('INFO')
-
-
- def test_lenet_mnist_coverage():
- # upload trained network
- ckpt_path = '../common/networks/lenet5/trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
- net = LeNet5()
- load_dict = load_checkpoint(ckpt_path)
- load_param_into_net(net, load_dict)
- model = Model(net)
-
- # get training data
- data_list = "../common/dataset/MNIST/train"
- batch_size = 32
- ds = generate_mnist_dataset(data_list, batch_size, sparse=True)
- train_images = []
- for data in ds.create_tuple_iterator():
- images = data[0].astype(np.float32)
- train_images.append(images)
- train_images = np.concatenate(train_images, axis=0)
-
- # initialize fuzz test with training dataset
- model_fuzz_test = ModelCoverageMetrics(model, 10, 1000, train_images)
-
- # fuzz test with original test data
- # get test data
- data_list = "../common/dataset/MNIST/test"
- batch_size = 32
- ds = generate_mnist_dataset(data_list, batch_size, sparse=True)
- test_images = []
- test_labels = []
- for data in ds.create_tuple_iterator():
- images = data[0].astype(np.float32)
- labels = data[1]
- test_images.append(images)
- test_labels.append(labels)
- test_images = np.concatenate(test_images, axis=0)
- test_labels = np.concatenate(test_labels, axis=0)
- model_fuzz_test.calculate_coverage(test_images)
- LOGGER.info(TAG, 'KMNC of this test is : %s', model_fuzz_test.get_kmnc())
- LOGGER.info(TAG, 'NBC of this test is : %s', model_fuzz_test.get_nbc())
- LOGGER.info(TAG, 'SNAC of this test is : %s', model_fuzz_test.get_snac())
-
- # generate adv_data
- loss = SoftmaxCrossEntropyWithLogits(sparse=True)
- attack = FastGradientSignMethod(net, eps=0.3, loss_fn=loss)
- adv_data = attack.batch_generate(test_images, test_labels, batch_size=32)
- model_fuzz_test.calculate_coverage(adv_data, bias_coefficient=0.5)
- LOGGER.info(TAG, 'KMNC of this adv data is : %s', model_fuzz_test.get_kmnc())
- LOGGER.info(TAG, 'NBC of this adv data is : %s', model_fuzz_test.get_nbc())
- LOGGER.info(TAG, 'SNAC of this adv data is : %s', model_fuzz_test.get_snac())
-
-
- if __name__ == '__main__':
- # device_target can be "CPU", "GPU" or "Ascend"
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- test_lenet_mnist_coverage()
|