|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
-
- import mindspore.nn as nn
- from mindspore import context
- from mindspore.nn.metrics import Accuracy
- from mindspore.train import Model
- from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
-
- from mindarmour.utils.logger import LogUtil
-
- from examples.common.dataset.data_processing import generate_mnist_dataset
- from examples.common.networks.lenet5.lenet5_net import LeNet5
-
- LOGGER = LogUtil.get_instance()
- LOGGER.set_level('INFO')
-
- TAG = "Lenet5_train"
-
-
- def mnist_train(epoch_size, batch_size, lr, momentum):
- mnist_path = "../../dataset/MNIST"
- ds = generate_mnist_dataset(os.path.join(mnist_path, "train"),
- batch_size=batch_size, repeat_size=1)
-
- network = LeNet5()
- net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
- net_opt = nn.Momentum(network.trainable_params(), lr, momentum)
- config_ck = CheckpointConfig(save_checkpoint_steps=1875,
- keep_checkpoint_max=10)
- ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet",
- directory="./trained_ckpt_file/",
- config=config_ck)
- model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
-
- LOGGER.info(TAG, "============== Starting Training ==============")
- model.train(epoch_size, ds, callbacks=[ckpoint_cb, LossMonitor()],
- dataset_sink_mode=False)
-
- LOGGER.info(TAG, "============== Starting Testing ==============")
- ckpt_file_name = "trained_ckpt_file/checkpoint_lenet-10_1875.ckpt"
- param_dict = load_checkpoint(ckpt_file_name)
- load_param_into_net(network, param_dict)
- ds_eval = generate_mnist_dataset(os.path.join(mnist_path, "test"),
- batch_size=batch_size)
- acc = model.eval(ds_eval, dataset_sink_mode=False)
- LOGGER.info(TAG, "============== Accuracy: %s ==============", acc)
-
-
- if __name__ == '__main__':
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
- mnist_train(10, 32, 0.01, 0.9)
|