|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """defense example using nad"""
- import os
-
- import numpy as np
- from mindspore import Tensor
- from mindspore import context
- from mindspore import nn, Model
- from mindspore.nn import SoftmaxCrossEntropyWithLogits
- from mindspore.train.callback import LossMonitor
-
- from mindarmour.adv_robustness.attacks import FastGradientSignMethod
- from mindarmour.adv_robustness.defenses import NaturalAdversarialDefense
- from mindarmour.utils import LogUtil
-
- from examples.common.networks.lenet5.lenet5_net import LeNet5
- from examples.common.dataset.data_processing import generate_mnist_dataset
-
-
- LOGGER = LogUtil.get_instance()
- LOGGER.set_level("INFO")
- TAG = 'Nad_Example'
-
-
- def test_nad_method():
- """
- NAD-Defense test.
- """
- mnist_path = "../../common/dataset/MNIST"
- batch_size = 32
- # 1. train original model
- ds_train = generate_mnist_dataset(os.path.join(mnist_path, "train"),
- batch_size=batch_size, repeat_size=1)
- net = LeNet5()
- loss = SoftmaxCrossEntropyWithLogits(sparse=True)
- opt = nn.Momentum(net.trainable_params(), 0.01, 0.09)
- model = Model(net, loss, opt, metrics=None)
- model.train(10, ds_train, callbacks=[LossMonitor()],
- dataset_sink_mode=False)
-
- # 2. get test data
- ds_test = generate_mnist_dataset(os.path.join(mnist_path, "test"),
- batch_size=batch_size, repeat_size=1)
- inputs = []
- labels = []
- for data in ds_test.create_tuple_iterator(output_numpy=True):
- inputs.append(data[0].astype(np.float32))
- labels.append(data[1])
- inputs = np.concatenate(inputs)
- labels = np.concatenate(labels)
-
- # 3. get accuracy of test data on original model
- net.set_train(False)
- logits = net(Tensor(inputs)).asnumpy()
- label_pred = np.argmax(logits, axis=1)
- acc = np.mean(labels == label_pred)
- LOGGER.info(TAG, 'accuracy of TEST data on original model is : %s', acc)
-
- # 4. get adv of test data
- attack = FastGradientSignMethod(net, eps=0.3, loss_fn=loss)
- adv_data = attack.batch_generate(inputs, labels)
- LOGGER.info(TAG, 'adv_data.shape is : %s', adv_data.shape)
-
- # 5. get accuracy of adv data on original model
- net.set_train(False)
- logits = net(Tensor(adv_data)).asnumpy()
- label_pred = np.argmax(logits, axis=1)
- acc = np.mean(labels == label_pred)
- LOGGER.info(TAG, 'accuracy of adv data on original model is : %s', acc)
-
- # 6. defense
- ds_train = generate_mnist_dataset(os.path.join(mnist_path, "train"),
- batch_size=batch_size, repeat_size=1)
- inputs_train = []
- labels_train = []
- for data in ds_train.create_tuple_iterator(output_numpy=True):
- inputs_train.append(data[0].astype(np.float32))
- labels_train.append(data[1])
- inputs_train = np.concatenate(inputs_train)
- labels_train = np.concatenate(labels_train)
- net.set_train()
- nad = NaturalAdversarialDefense(net, loss_fn=loss, optimizer=opt,
- bounds=(0.0, 1.0), eps=0.3)
- nad.batch_defense(inputs_train, labels_train, batch_size=32, epochs=10)
-
- # 7. get accuracy of test data on defensed model
- net.set_train(False)
- logits = net(Tensor(inputs)).asnumpy()
- label_pred = np.argmax(logits, axis=1)
- acc = np.mean(labels == label_pred)
- LOGGER.info(TAG, 'accuracy of TEST data on defensed model is : %s', acc)
-
- # 8. get accuracy of adv data on defensed model
- logits = net(Tensor(adv_data)).asnumpy()
- label_pred = np.argmax(logits, axis=1)
- acc = np.mean(labels == label_pred)
- LOGGER.info(TAG, 'accuracy of adv data on defensed model is : %s', acc)
-
-
- if __name__ == '__main__':
- # device_target can be "CPU", "GPU" or "Ascend"
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- test_nad_method()
|