|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import sys
- import numpy as np
-
- from mindspore import Model
- from mindspore import context
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.nn import SoftmaxCrossEntropyWithLogits
-
- from mindarmour.attacks.gradient_method import FastGradientSignMethod
- from mindarmour.utils.logger import LogUtil
- from mindarmour.fuzzing.model_coverage_metrics import ModelCoverageMetrics
- from mindarmour.fuzzing.fuzzing import Fuzzing
- from lenet5_net import LeNet5
-
- sys.path.append("..")
- from data_processing import generate_mnist_dataset
-
- LOGGER = LogUtil.get_instance()
- TAG = 'Fuzz_test'
- LOGGER.set_level('INFO')
-
-
- def test_lenet_mnist_fuzzing():
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
- # upload trained network
- ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
- net = LeNet5()
- load_dict = load_checkpoint(ckpt_name)
- load_param_into_net(net, load_dict)
- model = Model(net)
-
- # get training data
- data_list = "./MNIST_datasets/train"
- batch_size = 32
- ds = generate_mnist_dataset(data_list, batch_size, sparse=True)
- train_images = []
- for data in ds.create_tuple_iterator():
- images = data[0].astype(np.float32)
- train_images.append(images)
- train_images = np.concatenate(train_images, axis=0)
-
- # initialize fuzz test with training dataset
- model_coverage_test = ModelCoverageMetrics(model, 1000, 10, train_images)
-
- # fuzz test with original test data
- # get test data
- data_list = "./MNIST_datasets/test"
- batch_size = 32
- ds = generate_mnist_dataset(data_list, batch_size, sparse=True)
- test_images = []
- test_labels = []
- for data in ds.create_tuple_iterator():
- images = data[0].astype(np.float32)
- labels = data[1]
- test_images.append(images)
- test_labels.append(labels)
- test_images = np.concatenate(test_images, axis=0)
- test_labels = np.concatenate(test_labels, axis=0)
- initial_seeds = []
-
- # make initial seeds
- for img, label in zip(test_images, test_labels):
- initial_seeds.append([img, label, 0])
-
- initial_seeds = initial_seeds[:100]
- model_coverage_test.test_adequacy_coverage_calculate(np.array(test_images[:100]).astype(np.float32))
- LOGGER.info(TAG, 'KMNC of this test is : %s', model_coverage_test.get_kmnc())
-
- model_fuzz_test = Fuzzing(initial_seeds, model, train_images, 20)
- failed_tests = model_fuzz_test.fuzzing()
- model_coverage_test.test_adequacy_coverage_calculate(np.array(failed_tests).astype(np.float32))
- LOGGER.info(TAG, 'KMNC of this test is : %s', model_coverage_test.get_kmnc())
-
-
- if __name__ == '__main__':
- test_lenet_mnist_fuzzing()
|