|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Model-fuzz coverage test.
- """
- import numpy as np
- import pytest
- import sys
-
- from mindspore.train import Model
- from mindspore import nn
- from mindspore.ops import operations as P
- from mindspore import context
- from mindspore.common.initializer import TruncatedNormal
-
- from mindarmour.utils.logger import LogUtil
- from mindarmour.fuzzing.model_coverage_metrics import ModelCoverageMetrics
- from mindarmour.fuzzing.fuzzing import Fuzzing
-
-
- LOGGER = LogUtil.get_instance()
- TAG = 'Fuzzing test'
- LOGGER.set_level('INFO')
-
-
- def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
- weight = weight_variable()
- return nn.Conv2d(in_channels, out_channels,
- kernel_size=kernel_size, stride=stride, padding=padding,
- weight_init=weight, has_bias=False, pad_mode="valid")
-
-
- def fc_with_initialize(input_channels, out_channels):
- weight = weight_variable()
- bias = weight_variable()
- return nn.Dense(input_channels, out_channels, weight, bias)
-
-
- def weight_variable():
- return TruncatedNormal(0.02)
-
-
- class Net(nn.Cell):
- """
- Lenet network
- """
- def __init__(self):
- super(Net, self).__init__()
- self.conv1 = conv(1, 6, 5)
- self.conv2 = conv(6, 16, 5)
- self.fc1 = fc_with_initialize(16*5*5, 120)
- self.fc2 = fc_with_initialize(120, 84)
- self.fc3 = fc_with_initialize(84, 10)
- self.relu = nn.ReLU()
- self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
- self.reshape = P.Reshape()
-
- def construct(self, x):
- x = self.conv1(x)
- x = self.relu(x)
- x = self.max_pool2d(x)
- x = self.conv2(x)
- x = self.relu(x)
- x = self.max_pool2d(x)
- x = self.reshape(x, (-1, 16*5*5))
- x = self.fc1(x)
- x = self.relu(x)
- x = self.fc2(x)
- x = self.relu(x)
- x = self.fc3(x)
- return x
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.env_onecard
- @pytest.mark.component_mindarmour
- def test_fuzzing_ascend():
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- # load network
- net = Net()
- model = Model(net)
- batch_size = 8
- num_classe = 10
-
- # initialize fuzz test with training dataset
- training_data = np.random.rand(32, 1, 32, 32).astype(np.float32)
- model_coverage_test = ModelCoverageMetrics(model, 1000, 10, training_data)
-
- # fuzz test with original test data
- # get test data
- test_data = np.random.rand(batch_size, 1, 32, 32).astype(np.float32)
- test_labels = np.random.randint(num_classe, size=batch_size).astype(np.int32)
- test_labels = (np.eye(num_classe)[test_labels]).astype(np.float32)
-
- initial_seeds = []
- for img, label in zip(test_data, test_labels):
- initial_seeds.append([img, label, 0])
- model_coverage_test.test_adequacy_coverage_calculate(
- np.array(test_data).astype(np.float32))
- LOGGER.info(TAG, 'KMNC of this test is : %s',
- model_coverage_test.get_kmnc())
-
- model_fuzz_test = Fuzzing(initial_seeds, model, training_data, 5,
- max_seed_num=10)
- failed_tests = model_fuzz_test.fuzzing()
- model_coverage_test.test_adequacy_coverage_calculate(
- np.array(failed_tests).astype(np.float32))
- LOGGER.info(TAG, 'KMNC of this test is : %s',
- model_coverage_test.get_kmnc())
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- @pytest.mark.component_mindarmour
- def test_fuzzing_ascend():
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
- # load network
- net = Net()
- model = Model(net)
- batch_size = 8
- num_classe = 10
-
- # initialize fuzz test with training dataset
- training_data = np.random.rand(32, 1, 32, 32).astype(np.float32)
- model_coverage_test = ModelCoverageMetrics(model, 1000, 10, training_data)
-
- # fuzz test with original test data
- # get test data
- test_data = np.random.rand(batch_size, 1, 32, 32).astype(np.float32)
- test_labels = np.random.randint(num_classe, size=batch_size).astype(np.int32)
- test_labels = (np.eye(num_classe)[test_labels]).astype(np.float32)
-
- initial_seeds = []
- for img, label in zip(test_data, test_labels):
- initial_seeds.append([img, label, 0])
- model_coverage_test.test_adequacy_coverage_calculate(
- np.array(test_data).astype(np.float32))
- LOGGER.info(TAG, 'KMNC of this test is : %s',
- model_coverage_test.get_kmnc())
-
- model_fuzz_test = Fuzzing(initial_seeds, model, training_data, 5,
- max_seed_num=10)
- failed_tests = model_fuzz_test.fuzzing()
- model_coverage_test.test_adequacy_coverage_calculate(
- np.array(failed_tests).astype(np.float32))
- LOGGER.info(TAG, 'KMNC of this test is : %s',
- model_coverage_test.get_kmnc())
|