|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import pytest
-
- from mindspore import nn
- from mindspore import context
- from mindspore.train.model import Model
-
- from mindarmour.privacy.diff_privacy import DPOptimizerClassFactory
-
- from tests.ut.python.utils.mock_net import Net
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_optimizer():
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
- network = Net()
- lr = 0.01
- momentum = 0.9
- micro_batches = 2
- loss = nn.SoftmaxCrossEntropyWithLogits()
- factory = DPOptimizerClassFactory(micro_batches)
- factory.set_mechanisms('Gaussian', norm_bound=1.5, initial_noise_multiplier=5.0)
- net_opt = factory.create('SGD')(params=network.trainable_params(), learning_rate=lr,
- momentum=momentum)
- _ = Model(network, loss_fn=loss, optimizer=net_opt, metrics=None)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_optimizer_gpu():
- context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
- network = Net()
- lr = 0.01
- momentum = 0.9
- micro_batches = 2
- loss = nn.SoftmaxCrossEntropyWithLogits()
- factory = DPOptimizerClassFactory(micro_batches)
- factory.set_mechanisms('Gaussian', norm_bound=1.5, initial_noise_multiplier=5.0)
- net_opt = factory.create('SGD')(params=network.trainable_params(), learning_rate=lr,
- momentum=momentum)
- _ = Model(network, loss_fn=loss, optimizer=net_opt, metrics=None)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_optimizer_cpu():
- context.set_context(mode=context.PYNATIVE_MODE, device_target="CPU")
- network = Net()
- lr = 0.01
- momentum = 0.9
- micro_batches = 2
- loss = nn.SoftmaxCrossEntropyWithLogits()
- factory = DPOptimizerClassFactory(micro_batches)
- factory.set_mechanisms('Gaussian', norm_bound=1.5, initial_noise_multiplier=5.0)
- net_opt = factory.create('SGD')(params=network.trainable_params(), learning_rate=lr,
- momentum=momentum)
- _ = Model(network, loss_fn=loss, optimizer=net_opt, metrics=None)
|