|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import sys
- import numpy as np
- import pytest
- from scipy.special import softmax
-
- from mindspore import Tensor
- from mindspore import context
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
-
- from mindarmour.attacks.black.salt_and_pepper_attack import SaltAndPepperNoiseAttack
- from mindarmour.attacks.black.black_model import BlackModel
- from mindarmour.utils.logger import LogUtil
- from mindarmour.evaluations.attack_evaluation import AttackEvaluate
-
- from lenet5_net import LeNet5
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
-
- sys.path.append("..")
- from data_processing import generate_mnist_dataset
-
- LOGGER = LogUtil.get_instance()
- TAG = 'Salt_and_Pepper_Attack'
- LOGGER.set_level('DEBUG')
-
-
- class ModelToBeAttacked(BlackModel):
- """model to be attack"""
-
- def __init__(self, network):
- super(ModelToBeAttacked, self).__init__()
- self._network = network
-
- def predict(self, inputs):
- """predict"""
- if len(inputs.shape) == 3:
- inputs = inputs[np.newaxis, :]
- result = self._network(Tensor(inputs.astype(np.float32)))
- return result.asnumpy()
-
-
- @pytest.mark.level1
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_salt_and_pepper_attack_on_mnist():
- """
- Salt-and-Pepper-Attack test
- """
- # upload trained network
- ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
- net = LeNet5()
- load_dict = load_checkpoint(ckpt_name)
- load_param_into_net(net, load_dict)
-
- # get test data
- data_list = "./MNIST_unzip/test"
- batch_size = 32
- ds = generate_mnist_dataset(data_list, batch_size=batch_size)
-
- # prediction accuracy before attack
- model = ModelToBeAttacked(net)
- batch_num = 3 # the number of batches of attacking samples
- test_images = []
- test_labels = []
- predict_labels = []
- i = 0
- for data in ds.create_tuple_iterator():
- i += 1
- images = data[0].astype(np.float32)
- labels = data[1]
- test_images.append(images)
- test_labels.append(labels)
- pred_labels = np.argmax(model.predict(images), axis=1)
- predict_labels.append(pred_labels)
- if i >= batch_num:
- break
- LOGGER.debug(TAG, 'model input image shape is: {}'.format(np.array(test_images).shape))
- predict_labels = np.concatenate(predict_labels)
- true_labels = np.concatenate(test_labels)
- accuracy = np.mean(np.equal(predict_labels, true_labels))
- LOGGER.info(TAG, "prediction accuracy before attacking is : %g", accuracy)
-
- # attacking
- is_target = False
- attack = SaltAndPepperNoiseAttack(model=model,
- is_targeted=is_target,
- sparse=True)
- if is_target:
- targeted_labels = np.random.randint(0, 10, size=len(true_labels))
- for i in range(len(true_labels)):
- if targeted_labels[i] == true_labels[i]:
- targeted_labels[i] = (targeted_labels[i] + 1) % 10
- else:
- targeted_labels = true_labels
- LOGGER.debug(TAG, 'input shape is: {}'.format(np.concatenate(test_images).shape))
- success_list, adv_data, query_list = attack.generate(
- np.concatenate(test_images), targeted_labels)
- success_list = np.arange(success_list.shape[0])[success_list]
- LOGGER.info(TAG, 'success_list: %s', success_list)
- LOGGER.info(TAG, 'average of query times is : %s', np.mean(query_list))
- adv_preds = []
- for ite_data in adv_data:
- pred_logits_adv = model.predict(ite_data)
- # rescale predict confidences into (0, 1).
- pred_logits_adv = softmax(pred_logits_adv, axis=1)
- adv_preds.extend(pred_logits_adv)
- accuracy_adv = np.mean(np.equal(np.max(adv_preds, axis=1), true_labels))
- LOGGER.info(TAG, "prediction accuracy after attacking is : %g",
- accuracy_adv)
- test_labels_onehot = np.eye(10)[true_labels]
- attack_evaluate = AttackEvaluate(np.concatenate(test_images),
- test_labels_onehot, adv_data,
- adv_preds, targeted=is_target,
- target_label=targeted_labels)
- LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s',
- attack_evaluate.mis_classification_rate())
- LOGGER.info(TAG, 'The average confidence of adversarial class is : %s',
- attack_evaluate.avg_conf_adv_class())
- LOGGER.info(TAG, 'The average confidence of true class is : %s',
- attack_evaluate.avg_conf_true_class())
- LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original '
- 'samples and adversarial samples are: %s',
- attack_evaluate.avg_lp_distance())
-
-
- if __name__ == '__main__':
- test_salt_and_pepper_attack_on_mnist()
|