|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- PointWise Attack test
- """
- import sys
- import os
- import numpy as np
- import pytest
-
-
- from mindspore import Tensor
- from mindspore import context
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
-
- from mindarmour.attacks.black.pointwise_attack import PointWiseAttack
- from mindarmour.utils.logger import LogUtil
- from mindarmour.attacks.black.black_model import BlackModel
-
- sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)),
- "../../../../../"))
- from example.mnist_demo.lenet5_net import LeNet5
-
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
-
- LOGGER = LogUtil.get_instance()
- TAG = 'Pointwise_Test'
- LOGGER.set_level('INFO')
-
-
- class ModelToBeAttacked(BlackModel):
- """model to be attack"""
-
- def __init__(self, network):
- super(ModelToBeAttacked, self).__init__()
- self._network = network
-
- def predict(self, inputs):
- """predict"""
- result = self._network(Tensor(inputs.astype(np.float32)))
- return result.asnumpy()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_pointwise_attack_method():
- """
- Pointwise attack method unit test.
- """
- np.random.seed(123)
- # upload trained network
- current_dir = os.path.dirname(os.path.abspath(__file__))
- ckpt_name = os.path.join(current_dir,
- '../../test_data/trained_ckpt_file/checkpoint_lenet-10_1875.ckpt')
- net = LeNet5()
- load_dict = load_checkpoint(ckpt_name)
- load_param_into_net(net, load_dict)
-
- # get one mnist image
- input_np = np.load(os.path.join(current_dir,
- '../../test_data/test_images.npy'))[:3]
- labels = np.load(os.path.join(current_dir,
- '../../test_data/test_labels.npy'))[:3]
- model = ModelToBeAttacked(net)
- pre_label = np.argmax(model.predict(input_np), axis=1)
- LOGGER.info(TAG, 'original sample predict labels are :{}'.format(pre_label))
- LOGGER.info(TAG, 'true labels are: {}'.format(labels))
- attack = PointWiseAttack(model, sparse=True, is_targeted=False)
- is_adv, adv_data, query_times = attack.generate(input_np, pre_label)
- LOGGER.info(TAG, 'adv sample predict labels are: {}'
- .format(np.argmax(model.predict(adv_data), axis=1)))
-
- assert np.any(adv_data[is_adv][0] != input_np[is_adv][0]), 'Pointwise attack method: ' \
- 'generate value must not be equal' \
- ' to original value.'
|