|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Batch-generate-attack test.
- """
- import numpy as np
- import pytest
-
- import mindspore.ops.operations as P
- from mindspore.nn import Cell
- import mindspore.context as context
-
- from mindarmour.attacks.gradient_method import FastGradientMethod
-
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
-
-
- # for user
- class Net(Cell):
- """
- Construct the network of target model.
-
- Examples:
- >>> net = Net()
- """
-
- def __init__(self):
- """
- Introduce the layers used for network construction.
- """
- super(Net, self).__init__()
- self._softmax = P.Softmax()
-
- def construct(self, inputs):
- """
- Construct network.
-
- Args:
- inputs (Tensor): Input data.
- """
- out = self._softmax(inputs)
- return out
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_batch_generate_attack():
- """
- Attack with batch-generate.
- """
- input_np = np.random.random((128, 10)).astype(np.float32)
- label = np.random.randint(0, 10, 128).astype(np.int32)
- label = np.eye(10)[label].astype(np.float32)
-
- attack = FastGradientMethod(Net())
- ms_adv_x = attack.batch_generate(input_np, label, batch_size=32)
-
- assert np.any(ms_adv_x != input_np), 'Fast gradient method: generate value' \
- ' must not be equal to original value.'
|