|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Iterative-gradient Attack test.
- """
- import numpy as np
- import pytest
-
- from mindspore.ops import operations as P
- from mindspore.nn import Cell
- from mindspore import context
-
- from mindarmour.attacks import BasicIterativeMethod
- from mindarmour.attacks import MomentumIterativeMethod
- from mindarmour.attacks import ProjectedGradientDescent
- from mindarmour.attacks import IterativeGradientMethod
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
-
-
- # for user
- class Net(Cell):
- """
- Construct the network of target model.
-
- Examples:
- >>> net = Net()
- """
-
- def __init__(self):
- super(Net, self).__init__()
- self._softmax = P.Softmax()
-
- def construct(self, inputs):
- """
- Construct network.
-
- Args:
- inputs (Tensor): Input data.
- """
- out = self._softmax(inputs)
- return out
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_basic_iterative_method():
- """
- Basic iterative method unit test.
- """
- input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32)
- label = np.asarray([2], np.int32)
- label = np.eye(3)[label].astype(np.float32)
-
- for i in range(5):
- net = Net()
- attack = BasicIterativeMethod(net, nb_iter=i + 1)
- ms_adv_x = attack.generate(input_np, label)
- assert np.any(
- ms_adv_x != input_np), 'Basic iterative method: generate value' \
- ' must not be equal to original value.'
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_momentum_iterative_method():
- """
- Momentum iterative method unit test.
- """
- input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32)
- label = np.asarray([2], np.int32)
- label = np.eye(3)[label].astype(np.float32)
-
- for i in range(5):
- attack = MomentumIterativeMethod(Net(), nb_iter=i + 1)
- ms_adv_x = attack.generate(input_np, label)
- assert np.any(ms_adv_x != input_np), 'Basic iterative method: generate' \
- ' value must not be equal to' \
- ' original value.'
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_projected_gradient_descent_method():
- """
- Projected gradient descent method unit test.
- """
- input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32)
- label = np.asarray([2], np.int32)
- label = np.eye(3)[label].astype(np.float32)
-
- for i in range(5):
- attack = ProjectedGradientDescent(Net(), nb_iter=i + 1)
- ms_adv_x = attack.generate(input_np, label)
-
- assert np.any(
- ms_adv_x != input_np), 'Projected gradient descent method: ' \
- 'generate value must not be equal to' \
- ' original value.'
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_error():
- with pytest.raises(ValueError):
- # check_param_multi_types
- assert IterativeGradientMethod(Net(), bounds=None)
- attack = IterativeGradientMethod(Net(), bounds=(0.0, 1.0))
- with pytest.raises(NotImplementedError):
- input_np = np.asarray([[0.1, 0.2, 0.7]], np.float32)
- label = np.asarray([2], np.int32)
- label = np.eye(3)[label].astype(np.float32)
- assert attack.generate(input_np, label)
|