|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- mocked model for UT of defense algorithms.
- """
- import numpy as np
-
- from mindspore import nn
- from mindspore import Tensor
- from mindspore.nn import Cell
- from mindspore.nn import WithLossCell, TrainOneStepCell
- from mindspore.nn.optim.momentum import Momentum
- from mindspore.ops import operations as P
- from mindspore import context
- from mindspore.common.initializer import TruncatedNormal
-
- from mindarmour.attacks import FastGradientSignMethod
-
-
- def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
- weight = weight_variable()
- return nn.Conv2d(in_channels, out_channels,
- kernel_size=kernel_size, stride=stride, padding=padding,
- weight_init=weight, has_bias=False, pad_mode="valid")
-
-
- def fc_with_initialize(input_channels, out_channels):
- weight = weight_variable()
- bias = weight_variable()
- return nn.Dense(input_channels, out_channels, weight, bias)
-
-
- def weight_variable():
- return TruncatedNormal(0.02)
-
-
- class Net(nn.Cell):
- """
- Lenet network
- """
- def __init__(self):
- super(Net, self).__init__()
- self.conv1 = conv(1, 6, 5)
- self.conv2 = conv(6, 16, 5)
- self.fc1 = fc_with_initialize(16*5*5, 120)
- self.fc2 = fc_with_initialize(120, 84)
- self.fc3 = fc_with_initialize(84, 10)
- self.relu = nn.ReLU()
- self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
- self.reshape = P.Reshape()
-
- def construct(self, x):
- x = self.conv1(x)
- x = self.relu(x)
- x = self.max_pool2d(x)
- x = self.conv2(x)
- x = self.relu(x)
- x = self.max_pool2d(x)
- x = self.reshape(x, (-1, 16*5*5))
- x = self.fc1(x)
- x = self.relu(x)
- x = self.fc2(x)
- x = self.relu(x)
- x = self.fc3(x)
- return x
-
- if __name__ == '__main__':
- num_classes = 10
- batch_size = 32
-
- sparse = False
- context.set_context(mode=context.GRAPH_MODE)
- context.set_context(device_target='Ascend')
-
- # create test data
- inputs_np = np.random.rand(batch_size, 1, 32, 32).astype(np.float32)
- labels_np = np.random.randint(num_classes, size=batch_size).astype(np.int32)
- if not sparse:
- labels_np = np.eye(num_classes)[labels_np].astype(np.float32)
-
- net = Net()
-
- # test fgsm
- attack = FastGradientSignMethod(net, eps=0.3)
- attack.generate(inputs_np, labels_np)
-
- # test train ops
- loss_fn = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=sparse)
- optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()),
- 0.01, 0.9)
- loss_net = WithLossCell(net, loss_fn)
- train_net = TrainOneStepCell(loss_net, optimizer)
- train_net.set_train()
-
- train_net(Tensor(inputs_np), Tensor(labels_np))
|