|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- EnsembleDetector Test
- """
- import numpy as np
- import pytest
-
- from mindspore.nn import Cell
- from mindspore.ops.operations import TensorAdd
- from mindspore.train.model import Model
- from mindspore import context
-
- from mindarmour.detectors.mag_net import ErrorBasedDetector
- from mindarmour.detectors.region_based_detector import RegionBasedDetector
- from mindarmour.detectors.ensemble_detector import EnsembleDetector
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
-
-
- class Net(Cell):
- """
- Construct the network of target model.
- """
- def __init__(self):
- super(Net, self).__init__()
- self.add = TensorAdd()
-
- def construct(self, inputs):
- """
- Construct network.
-
- Args:
- inputs (Tensor): Input data.
- """
- return self.add(inputs, inputs)
-
-
- class AutoNet(Cell):
- """
- Construct the network of target model.
- """
- def __init__(self):
- super(AutoNet, self).__init__()
- self.add = TensorAdd()
-
- def construct(self, inputs):
- """
- Construct network.
-
- Args:
- inputs (Tensor): Input data.
- """
- return self.add(inputs, inputs)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_ensemble_detector():
- """
- Compute mindspore result.
- """
- np.random.seed(6)
- adv = np.random.rand(4, 4).astype(np.float32)
- model = Model(Net())
- auto_encoder = Model(AutoNet())
- random_label = np.random.randint(10, size=4)
- labels = np.eye(10)[random_label]
- magnet_detector = ErrorBasedDetector(auto_encoder)
- region_detector = RegionBasedDetector(model)
- # use this to enable radius in region_detector
- region_detector.fit(adv, labels)
- detectors = [magnet_detector, region_detector]
- detector = EnsembleDetector(detectors)
- detected_res = detector.detect(adv)
- expected_value = np.array([0, 1, 0, 0])
- assert np.all(detected_res == expected_value)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_error():
- np.random.seed(6)
- adv = np.random.rand(4, 4).astype(np.float32)
- model = Model(Net())
- auto_encoder = Model(AutoNet())
- random_label = np.random.randint(10, size=4)
- labels = np.eye(10)[random_label]
- magnet_detector = ErrorBasedDetector(auto_encoder)
- region_detector = RegionBasedDetector(model)
- # use this to enable radius in region_detector
- detectors = [magnet_detector, region_detector]
- detector = EnsembleDetector(detectors)
- with pytest.raises(NotImplementedError):
- assert detector.fit(adv, labels)
|