|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Attack evaluation test.
- """
- import numpy as np
- import pytest
-
- from mindarmour.evaluations.attack_evaluation import AttackEvaluate
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_attack_eval():
- # prepare test data
- np.random.seed(1024)
- inputs = np.random.normal(size=(3, 512, 512, 3))
- labels = np.array([[0.1, 0.1, 0.2, 0.6],
- [0.1, 0.7, 0.0, 0.2],
- [0.8, 0.1, 0.0, 0.1]])
- adv_x = inputs + np.ones((3, 512, 512, 3))*0.001
- adv_y = np.array([[0.1, 0.1, 0.2, 0.6],
- [0.1, 0.0, 0.8, 0.1],
- [0.0, 0.9, 0.1, 0.0]])
-
- # create obj
- attack_eval = AttackEvaluate(inputs, labels, adv_x, adv_y)
-
- # run eval
- mr = attack_eval.mis_classification_rate()
- acac = attack_eval.avg_conf_adv_class()
- l_0, l_2, l_inf = attack_eval.avg_lp_distance()
- ass = attack_eval.avg_ssim()
- nte = attack_eval.nte()
- res = [mr, acac, l_0, l_2, l_inf, ass, nte]
-
- # compare
- expected_value = [0.6666, 0.8500, 1.0, 0.0009, 0.0001, 0.9999, 0.75]
- assert np.allclose(res, expected_value, 0.0001, 0.0001)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_value_error():
- # prepare test data
- np.random.seed(1024)
- inputs = np.random.normal(size=(3, 512, 512, 3))
- labels = np.array([[0.1, 0.1, 0.2, 0.6],
- [0.1, 0.7, 0.0, 0.2],
- [0.8, 0.1, 0.0, 0.1]])
- adv_x = inputs + np.ones((3, 512, 512, 3))*0.001
- adv_y = np.array([[0.1, 0.1, 0.2, 0.6],
- [0.1, 0.0, 0.8, 0.1],
- [0.0, 0.9, 0.1, 0.0]])
-
- # create obj
- with pytest.raises(ValueError) as e:
- assert AttackEvaluate(inputs, labels, adv_x, adv_y, targeted=True)
- assert str(e.value) == 'targeted attack need target_label, but got None.'
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_card
- @pytest.mark.component_mindarmour
- def test_value_error():
- # prepare test data
- np.random.seed(1024)
- inputs = np.array([])
- labels = np.array([])
- adv_x = inputs
- adv_y = np.array([])
-
- # create obj
- with pytest.raises(ValueError) as e:
- assert AttackEvaluate(inputs, labels, adv_x, adv_y)
- assert str(e.value) == 'inputs must not be empty'
|