|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- An example of fuzz testing and then enhance non-robustness model.
- """
- import random
- import numpy as np
-
- import mindspore
- from mindspore import Model
- from mindspore import context
- from mindspore import Tensor
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.nn import SoftmaxCrossEntropyWithLogits
- from mindspore.nn.optim.momentum import Momentum
-
- from mindarmour.adv_robustness.defenses import AdversarialDefense
- from mindarmour.fuzz_testing import Fuzzer
- from mindarmour.fuzz_testing import KMultisectionNeuronCoverage
- from mindarmour.utils.logger import LogUtil
-
- from examples.common.dataset.data_processing import generate_mnist_dataset
- from examples.common.networks.lenet5.lenet5_net_for_fuzzing import LeNet5
-
- LOGGER = LogUtil.get_instance()
- TAG = 'Fuzz_testing and enhance model'
- LOGGER.set_level('INFO')
-
-
- def split_dataset(image, label, proportion):
- """
- Split the generated fuzz data into train and test set.
- """
- indices = np.arange(len(image))
- random.shuffle(indices)
- train_length = int(len(image) * proportion)
- train_image = [image[i] for i in indices[:train_length]]
- train_label = [label[i] for i in indices[:train_length]]
- test_image = [image[i] for i in indices[:train_length]]
- test_label = [label[i] for i in indices[:train_length]]
- return train_image, train_label, test_image, test_label
-
-
- def example_lenet_mnist_fuzzing():
- """
- An example of fuzz testing and then enhance the non-robustness model.
- """
- # upload trained network
- ckpt_path = '../common/networks/lenet5/trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
- net = LeNet5()
- load_dict = load_checkpoint(ckpt_path)
- load_param_into_net(net, load_dict)
- model = Model(net)
- mutate_config = [
- {'method': 'GaussianBlur',
- 'params': {'ksize': [1, 2, 3, 5], 'auto_param': [True, False]}},
- {'method': 'MotionBlur',
- 'params': {'degree': [1, 2, 5], 'angle': [45, 10, 100, 140, 210, 270, 300], 'auto_param': [True]}},
- {'method': 'GradientBlur',
- 'params': {'point': [[10, 10]], 'auto_param': [True]}},
- {'method': 'UniformNoise',
- 'params': {'factor': [0.1, 0.2, 0.3], 'auto_param': [False, True]}},
- {'method': 'GaussianNoise',
- 'params': {'factor': [0.1, 0.2, 0.3], 'auto_param': [False, True]}},
- {'method': 'SaltAndPepperNoise',
- 'params': {'factor': [0.1, 0.2, 0.3], 'auto_param': [False, True]}},
- {'method': 'NaturalNoise',
- 'params': {'ratio': [0.1], 'k_x_range': [(1, 3), (1, 5)], 'k_y_range': [(1, 5)], 'auto_param': [False, True]}},
- {'method': 'Contrast',
- 'params': {'alpha': [0.5, 1, 1.5], 'beta': [-10, 0, 10], 'auto_param': [False, True]}},
- {'method': 'GradientLuminance',
- 'params': {'color_start': [(0, 0, 0)], 'color_end': [(255, 255, 255)], 'start_point': [(10, 10)],
- 'scope': [0.5], 'pattern': ['light'], 'bright_rate': [0.3], 'mode': ['circle'],
- 'auto_param': [False, True]}},
- {'method': 'Translate',
- 'params': {'x_bias': [0, 0.05, -0.05], 'y_bias': [0, -0.05, 0.05], 'auto_param': [False, True]}},
- {'method': 'Scale',
- 'params': {'factor_x': [1, 0.9], 'factor_y': [1, 0.9], 'auto_param': [False, True]}},
- {'method': 'Shear',
- 'params': {'factor': [0.2, 0.1], 'direction': ['horizontal', 'vertical'], 'auto_param': [False, True]}},
- {'method': 'Rotate',
- 'params': {'angle': [20, 90], 'auto_param': [False, True]}},
- {'method': 'Perspective',
- 'params': {'ori_pos': [[[0, 0], [0, 800], [800, 0], [800, 800]]],
- 'dst_pos': [[[50, 0], [0, 800], [780, 0], [800, 800]]], 'auto_param': [False, True]}},
- {'method': 'Curve',
- 'params': {'curves': [5], 'depth': [2], 'mode': ['vertical'], 'auto_param': [False, True]}},
- {'method': 'FGSM',
- 'params': {'eps': [0.3, 0.2, 0.4], 'alpha': [0.1], 'bounds': [(0, 1)]}}]
-
- # get training data
- data_list = "../common/dataset/MNIST/train"
- batch_size = 32
- ds = generate_mnist_dataset(data_list, batch_size, sparse=False)
- train_images = []
- for data in ds.create_tuple_iterator(output_numpy=True):
- images = data[0].astype(np.float32)
- train_images.append(images)
- train_images = np.concatenate(train_images, axis=0)
- segmented_num = 100
-
- # fuzz test with original test data
- data_list = "../common/dataset/MNIST/test"
- batch_size = batch_size
- init_samples = 50
- max_iters = 500
- mutate_num_per_seed = 10
- ds = generate_mnist_dataset(data_list, batch_size=batch_size, num_samples=init_samples, sparse=False)
- test_images = []
- test_labels = []
- for data in ds.create_tuple_iterator(output_numpy=True):
- test_images.append(data[0].astype(np.float32))
- test_labels.append(data[1])
- test_images = np.concatenate(test_images, axis=0)
- test_labels = np.concatenate(test_labels, axis=0)
-
- coverage = KMultisectionNeuronCoverage(model, train_images, segmented_num=segmented_num, incremental=True)
- kmnc = coverage.get_metrics(test_images[:100])
- print('kmnc: ', kmnc)
-
- # make initial seeds
- initial_seeds = []
- for img, label in zip(test_images, test_labels):
- initial_seeds.append([img, label])
-
- model_fuzz_test = Fuzzer(model)
- gen_samples, gt, _, _, metrics = model_fuzz_test.fuzzing(mutate_config,
- initial_seeds, coverage,
- evaluate=True,
- max_iters=max_iters,
- mutate_num_per_seed=mutate_num_per_seed)
-
- if metrics:
- for key in metrics:
- LOGGER.info(TAG, key + ': %s', metrics[key])
-
- train_image, train_label, test_image, test_label = split_dataset(gen_samples, gt, 0.7)
-
- # load model B and test it on the test set
- ckpt_path = '../common/networks/lenet5/trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
- net = LeNet5()
- load_dict = load_checkpoint(ckpt_path)
- load_param_into_net(net, load_dict)
- model_b = Model(net)
- pred_b = model_b.predict(Tensor(test_image, dtype=mindspore.float32)).asnumpy()
- acc_b = np.sum(np.argmax(pred_b, axis=1) == np.argmax(test_label, axis=1)) / len(test_label)
- print('Accuracy of model B on test set is ', acc_b)
-
- # enhense model robustness
- lr = 0.001
- momentum = 0.9
- loss_fn = SoftmaxCrossEntropyWithLogits(sparse=True)
- optimizer = Momentum(net.trainable_params(), lr, momentum)
-
- adv_defense = AdversarialDefense(net, loss_fn, optimizer)
- adv_defense.batch_defense(np.array(train_image).astype(np.float32), np.argmax(train_label, axis=1).astype(np.int32))
- preds_en = net(Tensor(test_image, dtype=mindspore.float32)).asnumpy()
- acc_en = np.sum(np.argmax(preds_en, axis=1) == np.argmax(test_label, axis=1)) / len(test_label)
- print('Accuracy of enhensed model on test set is ', acc_en)
-
-
- if __name__ == '__main__':
- # device_target can be "CPU", "GPU" or "Ascend"
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
- example_lenet_mnist_fuzzing()
|