|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Model-fuzzer test.
- """
- import numpy as np
- import pytest
- from mindspore import context
- from mindspore import nn
- from mindspore.common.initializer import TruncatedNormal
- from mindspore.ops import operations as P
- from mindspore.train import Model
- from mindspore.ops import TensorSummary
-
- from mindarmour.fuzz_testing import Fuzzer
- from mindarmour.fuzz_testing import KMultisectionNeuronCoverage
- from mindarmour.utils.logger import LogUtil
-
- LOGGER = LogUtil.get_instance()
- TAG = 'Fuzzing test'
- LOGGER.set_level('INFO')
-
-
- def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
- weight = weight_variable()
- return nn.Conv2d(in_channels, out_channels,
- kernel_size=kernel_size, stride=stride, padding=padding,
- weight_init=weight, has_bias=False, pad_mode="valid")
-
-
- def fc_with_initialize(input_channels, out_channels):
- weight = weight_variable()
- bias = weight_variable()
- return nn.Dense(input_channels, out_channels, weight, bias)
-
-
- def weight_variable():
- return TruncatedNormal(0.02)
-
-
- class Net(nn.Cell):
- """
- Lenet network
- """
-
- def __init__(self):
- super(Net, self).__init__()
- self.conv1 = conv(1, 6, 5)
- self.conv2 = conv(6, 16, 5)
- self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
- self.fc2 = fc_with_initialize(120, 84)
- self.fc3 = fc_with_initialize(84, 10)
- self.relu = nn.ReLU()
- self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
- self.reshape = P.Reshape()
- self.summary = TensorSummary()
-
- def construct(self, x):
- x = self.conv1(x)
- x = self.relu(x)
- self.summary('conv1', x)
- x = self.max_pool2d(x)
- x = self.conv2(x)
- x = self.relu(x)
- self.summary('conv2', x)
- x = self.max_pool2d(x)
- x = self.reshape(x, (-1, 16 * 5 * 5))
- x = self.fc1(x)
- x = self.relu(x)
- self.summary('fc1', x)
- x = self.fc2(x)
- x = self.relu(x)
- self.summary('fc2', x)
- x = self.fc3(x)
- self.summary('fc3', x)
- return x
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.env_onecard
- @pytest.mark.component_mindarmour
- def test_fuzzing_ascend():
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- # load network
- net = Net()
- model = Model(net)
- batch_size = 8
- num_classe = 10
- mutate_config = [{'method': 'GaussianBlur',
- 'params': {'ksize': [1, 2, 3, 5],
- 'auto_param': [True, False]}},
- {'method': 'UniformNoise',
- 'params': {'factor': [0.1, 0.2, 0.3], 'auto_param': [False, True]}},
- {'method': 'Contrast',
- 'params': {'alpha': [0.5, 1, 1.5], 'beta': [-10, 0, 10], 'auto_param': [False, True]}},
- {'method': 'Rotate',
- 'params': {'angle': [20, 90], 'auto_param': [False, True]}},
- {'method': 'FGSM',
- 'params': {'eps': [0.3, 0.2, 0.4], 'alpha': [0.1], 'bounds': [(0, 1)]}}]
-
- train_images = np.random.rand(32, 1, 32, 32).astype(np.float32)
- # fuzz test with original test data
- # get test data
- test_images = np.random.rand(batch_size, 1, 32, 32).astype(np.float32)
- test_labels = np.random.randint(num_classe, size=batch_size).astype(np.int32)
- test_labels = (np.eye(num_classe)[test_labels]).astype(np.float32)
-
- initial_seeds = []
- # make initial seeds
- for img, label in zip(test_images, test_labels):
- initial_seeds.append([img, label])
-
- initial_seeds = initial_seeds[:100]
-
- nc = KMultisectionNeuronCoverage(model, train_images, segmented_num=100)
- cn_metrics = nc.get_metrics(test_images[:100])
- print('neuron coverage of initial seeds is: ', cn_metrics)
- model_fuzz_test = Fuzzer(model)
- _, _, _, _, metrics = model_fuzz_test.fuzzing(mutate_config, initial_seeds, nc, max_iters=100)
- print(metrics)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- @pytest.mark.component_mindarmour
- def test_fuzzing_cpu():
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
- # load network
- net = Net()
- model = Model(net)
- batch_size = 8
- num_classe = 10
- mutate_config = [{'method': 'GaussianBlur',
- 'params': {'ksize': [1, 2, 3, 5],
- 'auto_param': [True, False]}},
- {'method': 'UniformNoise',
- 'params': {'factor': [0.1, 0.2, 0.3], 'auto_param': [False, True]}},
- {'method': 'Contrast',
- 'params': {'alpha': [0.5, 1, 1.5], 'beta': [-10, 0, 10], 'auto_param': [False, True]}},
- {'method': 'Rotate',
- 'params': {'angle': [20, 90], 'auto_param': [False, True]}},
- {'method': 'FGSM',
- 'params': {'eps': [0.3, 0.2, 0.4], 'alpha': [0.1], 'bounds': [(0, 1)]}}]
- # initialize fuzz test with training dataset
- train_images = np.random.rand(32, 1, 32, 32).astype(np.float32)
-
- # fuzz test with original test data
- # get test data
- test_images = np.random.rand(batch_size, 1, 32, 32).astype(np.float32)
- test_labels = np.random.randint(num_classe, size=batch_size).astype(np.int32)
- test_labels = (np.eye(num_classe)[test_labels]).astype(np.float32)
-
- initial_seeds = []
- # make initial seeds
- for img, label in zip(test_images, test_labels):
- initial_seeds.append([img, label])
-
- initial_seeds = initial_seeds[:100]
- nc = KMultisectionNeuronCoverage(model, train_images, segmented_num=100)
- tknc_metrics = nc.get_metrics(test_images[:100])
- print('neuron coverage of initial seeds is: ', tknc_metrics)
- model_fuzz_test = Fuzzer(model)
- _, _, _, _, metrics = model_fuzz_test.fuzzing(mutate_config, initial_seeds, nc, max_iters=100)
- print(metrics)
|